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1 Introduction  

 In 1965, Zadeh [15] introduced the notion of fuzzy sets [FS]. It shows the degree of membership of the 
element in a set. Later, fuzzy topological space was introduced by Chang [2] in 1968. In 1983, Atanassov [1] 
introduced the notion of intuitionistic fuzzy sets [IFS], where the degree of membership and degree of non-
membership are discussed. Later, Intuitionistic fuzzy topological spaces was introduced by Coker [3] in 1997. 
Neutrality the degree of indeterminacy as an independent concept was introduced by Florentin Smarandache [4] 
He also defined the Neutrosophic set on three components, namely Truth (membership), Indeterminacy, 
Falsehood (non-membership). In 2012, Salama A. A and Alblowi [10] introduced the concept of Neutrosophic 
topological space by using Neutrosophic sets. Salama A. A. [11] introduced Neutrosophic closed set and 
Neutrosophic continuous function. Further the basic sets like regular-open sets, semi-open sets, pre-open sets and 
α-open sets are introduced in Neutrosophic topological space and their properties are studied by various authors 
[6], [11], [13]. In this direction, we introduce and analyze a new class of neutrosophic closed set called 
neutrosophic generalized SPR closed sets. Also we study the separation axioms of neutrosophic generalized SPR 
closed sets, namely neutrosophic sprT1/2 space and neutrosophic sprT*

1/2 space in neutrosophic topological space. 

2  Preliminaries 
 We recall some basic definitions that are used in the sequel. 

Definition 2.1: [10]  

Let Ƴ be a non-empty set. A neutrosophic set (NS for short) A in Ƴ is an object having the form A = {〈Ƴ, µA(y), 
σ A(y), νA(y)〉: y ∈ Ƴ} where the functions µA(y), σ A(y) and νA(y) represent the degree of membership, degree of 
indeterminacy and the degree of non-membership respectively of each element y ∈ Ƴ to the set A. 

Remark 2.2: [10]  

A Neutrosophic set A = {〈y, µA(y), σA(y), νA(y) 〉: y ∈ Ƴ} can be identified to an ordered triple A = 〈µA(y), σA(y), 
νA(y)〉 in non-standard unit interval  ]�0, 1�[ on Ƴ. 

Remark 2.3: [10]  

For the sake of simplicity, we shall use the symbol A = 〈µA, σ A, νA〉 for the neutrosophic set   A = {〈y, µA(y), σ 

A(y), νA(y)〉: y ∈ Ƴ}. 

Example 2.4: [10] Every IFS A is a non-empty set in Ƴ is obviously on NS having the form                                  
A = {〈y, µA(y), 1 – (µA(y)+ νA(y)), νA(y)〉: y ∈ Ƴ}. Since our main purpose is to construct the tools for 
developing neutrosophic set and neutrosophic topology, we must introduce the NS 0N and 1N in Ƴ as follows: 
0N may be defined as: 
(01) 0N = {〈y, 0, 0, 1〉: y ∈ Ƴ} 
(02) 0N = {〈y, 0, 1, 1〉: y ∈ Ƴ} 
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(03) 0N = {〈y, 0, 1, 0〉: y ∈ Ƴ} 
(04) 0N = {〈y, 0, 0, 0〉: y ∈ Ƴ} 
 
1N may be defined as: 
(11) 1N = {〈y, 1, 0, 0〉: y ∈ Ƴ} 
(11) 1N = {〈y, 1, 0, 1〉: y ∈ Ƴ} 
(11) 1N = {〈y, 1, 1, 0〉: y ∈ Ƴ} 
(11) 1N = {〈y, 1, 1, 1〉: y ∈ Ƴ} 

Definition 2.5: [10]  

Let A = 〈µA, σ A, νA〉 be a NS on Ƴ, then the complement of the set A [C(A) for short] may be defined as three 
kind of complements: 
(C1) C(A) = {〈y, 1-µA(y), 1-σ A(y), 1-νA(y)〉: y ∈ Ƴ } 
(C2) C(A) = {〈y, νA(y), σ A(y), µA(y)〉: y ∈ Ƴ} 
(C3) C(A) = {〈y, νA(y), 1-σ A(y), µA(y)〉: y ∈ Ƴ} 

Definition 2.6: [10]  

Let Ƴ be a non-empty set and neutrosophic sets A and B in the form A = {〈y, µA(y), σ A(y), νA(y)〉: y ∈ Ƴ} and B 
= {〈y, µB(y), σ B(y), νB(y)〉: y ∈ Ƴ}. Then we may consider two possible definitions for subsets (A⊆B). 
(1) A⊆B ⇔ µA(y) ≤ µB(y), σ A(y) ≤ σ B(y) and µA(y) ≥ µB(y) ∀ y ∈ Ƴ 
(2) A⊆B ⇔ µA(y) ≤ µB(y), σ A(y) ≥ σ B(y) and µA(y) ≥ µB(y) ∀ y ∈ Ƴ 

Proposition 2.7: [10]  

For any Neutrosophic set A, the following conditions holds: 
0N ⊆ A, 0N ⊆0N 
 A⊆ 1N, 1N⊆1N 

Definition 2.8: [10]  

Let Ƴ be a non-empty set and A = {〈y, µA(y), σ A(y), νA(y)〉: y ∈ Ƴ}, B =  {〈y, µB(y), σ B(y), νB(y)〉: y ∈ Ƴ} are 
NSs. Then  
(1) A∩B may be defined as: 
(I1) A∩B = 〈y, µA(y)∧µB(y), σ A(y)∧σ B(y) and νA(y)∨νB(y)〉 
(I2) A∩B = 〈y, µA(y)∧µB(y), σ A(y)∨σ B(y) and νA(y)∨νB(y)〉 
(2) A∪B may be defined as: 
(U1) A∪B = 〈y, µA(y)∨µB(y), σ A(y)∨σ B(y) and νA(y)∧νB(y)〉 
(U2) A∪B = 〈y, µA(y)∨µB(y), σ A(y)∧σ B(y) and νA(y)∧νB(y)〉 
 
 We can easily generalize the operations of intersection and union in Definition 2.8., to arbitrary family 
of NSs as follows: 

Definition 2.9: [10]  

Let {Aj: j ∈ J} be an arbitrary family of NSs in Ƴ, then 
(1) ∩Aj may be defined as: 

(i) ∩Aj = 〈y, ∧j∈J µAj(y), ∧j∈J σAj(y), ∨j∈J νAj(y)〉 

(ii) ∩Aj = 〈y, ∧j∈J µAj(y), ∨j∈J σAj(y), ∨j∈J νAj(y)〉 

(2) ∪Aj may be defined as: 
(i) ∪Aj = 〈y, ∨j∈J µAj(y), ∨j∈J σAj(y), ∧j∈J νAj(y)〉 

(ii) ∪Aj = 〈y, ∨j∈J µAj(y), ∧j∈J σAj(y), ∧j∈J νAj(y)〉 

Proposition 2.10: [10]  

For all A and B are two neutrosophic sets then the following conditions are true: 
C(A∩B) = C(A) ∪ C(B) ; C(A∪B) = C(A) ∩ C(B). 

Definition 2.11: [10]  

A Neutrosophic topology [NT for short] is a non-empty set Ƴ is a family � of neutrosophic subsets in Ƴ 
satisfying the following axioms: 
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(NT1) 0N, 1N ∈ �, 
(NT2) G1∩G2 ∈ � for any G1, G2 ∈ �, 
(NT3) ∪ Gi ∈ � for every { Gi : i ∈ J} ⊆ �. 
 Throughout this paper, the pair (Ƴ, τ) is called a neutrosophic topological space (NTS for short).  The 
elements of � are called neutrosophic open sets [NOS for short]. A complement C(A) of a NOS A in NTS (Ƴ, τ) 
is called a neutrosophic closed set [NCS for short] in Ƴ. 

Example 2.12: [10]  

Any fuzzy topological space (Ƴ, �0) in the sense of Chang is obviously a NTS in the form � = {A: µA∈ �0} 
wherever we identify a fuzzy set in Ƴ whose membership function is µA with its counterpart. 
 
The following is an example of Neutrosophic topological space. 

Example 2.13: [10]  

Let Ƴ = {y} and A = {〈y, 0.5, 0.5, 0.4〉: y ∈ Ƴ}, B = {〈y, 0.4, 0.6, 0.8〉: y ∈ Ƴ}, C = {〈y, 0.5, 0.6, 0.4〉: y ∈ Ƴ}, D 
= {〈y, 0.4, 0.5, 0.8〉: y ∈ Ƴ}. Then the family � = {0N, A, B, C, D, 1N} of NSs in Ƴ is neutrosophic topological 
space on Ƴ. 
 
Now, we define the neutrosophic closure and neutrosophic interior operations in neutrosophic topological spaces: 

Definition 2.14: [10]  

Let (Ƴ, τ) be NTS and A = {〈y, µA(y), σ A(y), νA(y)〉: y ∈ Ƴ} be a NS in Ƴ. Then the neutrosophic closure and 
neutrosophic interior of A are defined by  
NCl(A) = ∩{K : K is a NCS in Ƴ and A ⊆ K} 
NInt(A) = ∪{G : G is a NOS in Ƴ and G ⊆ A} 
It can be also shown that NCl(A) is NCS and NInt(A) is a NOS in Ƴ. 

a) A is NOS if and only if A = NInt(A), 
b) A is NCS if and only if A = NCl(A). 

Proposition 2.15: [10]  

For any neutrosophic set A is (Ƴ, τ) we have 
a) NCl(C(A)) = C(NInt(A)), 
b) NInt(C(A)) = C(NCl(A)). 

Proposition 2.16: [10]  

Let (Ƴ, τ) be NTS and A, B be two neutrosophic sets in Ƴ. Then the following properties are holds: 
a) NInt(A) ⊆ A, 
b) A ⊆ NCl(A), 
c) A ⊆ B ⇒ NInt(A) ⊆ NInt(B), 
d) A ⊆ B ⇒ NCl(A) ⊆ NCl(B), 
e) NInt(NInt(A)) = NInt(A), 
f) NCl(NCl(A)) = NCl(A), 
g) NInt(A ∩ B) = NInt(A) ∩ NInt(B), 
h) NCl(A ∪ B) = NCl(A) ∪ NCl(B), 
i) NInt(0N) = 0N, 
j) NInt(1N) = 1N, 
k) NCl(0N) = 0N, 
l) NCl(1N) = 1N, 
m) A ⊆ B ⇒ C(A) ⊆ C(B), 
n) NCl(A ∩ B) ⊆ NCl(A) ∩ NCl(B), 
o) NInt(A ∪ B) ⊇ NInt(A) ∪ NInt(B). 

Definition 2.17: [5]  

A NS A = {〈y, µA(y), σ A(y), νA(y)〉: y ∈ Ƴ} in a NTS (Ƴ, τ) is said to be  
(i) Neutrosophic regular closed set (NRCS for short) if A = NCl(NInt(A)), 
(ii) Neutrosophic regular open set (NROS for short) if A = NInt(NCl(A)), 
(iii) Neutrosophic semi closed set (NSCS for short) if NInt(NCl(A)) ⊆ A, 
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(iv) Neutrosophic semi open set (NSOS for short) if A ⊆ NCl(NInt(A)), 
(v) Neutrosophic pre closed set (NPCS for short) if NCl(NInt(A)) ⊆ A,  
(vi) Neutrosophic pre open set (NPOS for short) if A ⊆ NInt(NCl(A)). 
(vii) Neutrosophic α- closed set (NSCS for short) if NCl(NInt(NCl(A))) ⊆ A, 
(viii) Neutrosophic α- open set (NSOS for short) if A ⊆ NInt(NCl(NInt(A))), 

Definition 2.18: [14]  

Let (Ƴ, τ) be NTS and A = {〈y, µA(y), σ A(y), νA(y)〉: y ∈ Ƴ} be a NS in Ƴ. Then the neutrosophic pre closure 
and neutrosophic pre interior of A are defined by  

NPCl(A) = ∩{K : K is a NPCS in Ƴ and A ⊆ K}, 
NPInt(A) = ∪{G : G is a NPOS in Ƴ and G ⊆ A}. 

Definition 2.19: [9]  

A NS A = {〈y, µA(y), σ A(y), νA(y)〉: y ∈ Ƴ} in a NTS (Ƴ, τ) is said to be a neutrosophic semi-pre closed set 
(NSPCS for short) if and only if Nint(Ncl(Nint(A))) ⊆ A. A NS A of a NTS (Ƴ, τ) is called a neutrosophic semi-
pre open set (NSPOS for short) ) if and only if A ⊆ Nint(Ncl(Nint(A))). 

Definition 2.20.  [9]  

Let A be a Neutrosophic set in Neutrosophic topology (Ƴ, �). Then is Neutrosophic semi pre interior of A 
[NSPint(A)] and Neutrosophic semi pre closure of A [NSPCI (A)] are defined by  

NSP int (A) = ∪{G : G is a NSPOS in Ƴ and G ⊆A},  
NSPcl (A) = ∩{K : K is a NSPCS in Ƴ and A ⊆K}. 

Definition 2.21: [7]  

A NS A = {〈y, µA(y), σ A(y), νA(y)〉: y ∈ Ƴ} in a NTS (Ƴ, τ) is said to be a neutrosophic generalized closed set 
(NGCS for short) if  NCl(A) ⊆ U whenever A ⊆ U and U is a NOS in (Ƴ, τ). A NS A of a NTS (Ƴ, τ) is called a 
neutrosophic generalized open set (NGOS for short) if C(A) is a NGCS in (Ƴ, τ). 

Definition 2.22: [12]  

A NS A = {〈y, µA(y), σ A(y), νA(y)〉: y ∈ Ƴ} in a NTS (Ƴ, τ) is said to be a neutrosophic  � closed set (N�CS for 
short) if  NCl(A) ⊆ U whenever A ⊆ U and U is a NSOS in (Ƴ, τ). A NS A of a NTS  (Ƴ, τ) is called a 
neutrosophic � open set (N�OS for short) if C(A) is a N�CS in (Ƴ, τ). 

Definition 2.23: [5]  

A NS A = {〈y, µA(y), σ A(y), νA(y)〉: y ∈ Ƴ} in a NTS (Ƴ, τ) is said to be a neutrosophic regular generalized 
closed set (NRGCS for short) if  NCl(A) ⊆ U whenever A ⊆ U and U is a NROS in (Ƴ, τ). A NS A of a NTS (Ƴ, 
τ) is called a neutrosophic regular generalized open set (NRGOS for short) if C(A) is a NRGCS in (Ƴ, τ). 

Definition 2.24: [14]  

A NS A = {〈y, µA(y), σ A(y), νA(y)〉: y ∈ Ƴ} in a NTS (Ƴ, τ) is said to be a neutrosophic generalized pre closed 
set (NGPCS for short) if  NPCl(A) ⊆ U whenever A ⊆ U and U is a NOS in (Ƴ, τ). A NS A of a NTS (Ƴ, τ) is 
called a neutrosophic generalized pre open set (NGPOS for short) if C(A) is a NGPCS in  (Ƴ, τ). 

Definition 2.25: [8]  

A NS A = {〈y, µA(y), σ A(y), νA(y)〉: y ∈ Ƴ} in a NTS (Ƴ, τ) is said to be a neutrosophic generalized semipre 
closed set (NGSPCS for short) if NSPCl(A) ⊆ U whenever A ⊆ U and U is a NOS in (Ƴ, τ). A NS A of a NTS 
(Ƴ, τ) is called a neutrosophic generalized semipre open set (NGSPOS for short) if C(A) is a NGSPCS in  (Ƴ, τ). 

Definition 2.26: [6]  

A NS A = {〈y, µA(y), σ A(y), νA(y)〉: y ∈ Ƴ} in a NTS (Ƴ, τ) is said to be a neutrosophic generalized pre regular 
closed set (NGPRCS for short) if  NPCl(A) ⊆ U whenever A ⊆ U and U is a NROS in (Ƴ, τ). A NS A of a NTS 
(Ƴ, τ) is called a neutrosophic generalized pre regular open set (NGPROS for short) if C(A) is a NGPRCS in  (Ƴ, 
τ). 
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3 Neutrosophic Generalized SPR Closed Sets 

Definition 3.1:  

A NS A in a NTS (Ƴ, τ) is said to be a neutrosophic generalized SPR closed set (NGSPRCS for short) if 
NSPCl(A) ⊆ U whenever A ⊆ U and U is a NROS in (Ƴ, τ). The family of all NGSPRCSs of a NTS(Ƴ, τ) is 
denoted by NGSPRC(Ƴ). 

Example 3.2: Let Ƴ= {a, b} and τ = {0N, U, 1N} where U= 〈(0.4, 0.2, 0.3), (0.8, 0.6,  0.7)〉. Then (Ƴ, τ) is a 
neutrosophic topological space. Here the NS A= 〈(0.2, 0.2, 0.6), (0.1, 0.4, 0.8)〉 is a NGSPRCS in (Ƴ, τ). Since A 
⊆ 1N and 1N is a NROS, we have NSPCl(A) = A ⊆1N. 

Theorem 3.3: Every NCS in (Ƴ, τ) is a NGSPRCS in (Ƴ, τ) but not conversely. 

Proof: Let U be a NROS in (Ƴ, τ) such that A ⊆ U.  Since A is NCS in (Ƴ, τ), we have NCl (A) = A. Therefore 
NSPCl(A) ⊆ NCl (A) = A ⊆ U, by hypothesis.  Hence A is a NGSPRCS in (Ƴ, τ). 

Example 3.4: In Example 3.2., the NS A= A= 〈(0.2, 0.2, 0.6), (0.1, 0.4, 0.8)〉 is a NGSPRCS but not NCS in    
(Ƴ, τ). 

Theorem 3.5: Every NαCS in (Ƴ, τ) is an NGSPRCS in (Ƴ, τ) but not conversely. 

Proof: Let U be a NROS in (Ƴ, τ) such that A ⊆ U.  Since A is NαCS in (Ƴ, τ), we have NCl(NInt(NCl(A))) ⊆ 
A, now NInt(A) ⊆ A, NInt(NCl(NInt(A))) ⊆ NCl(NInt(NCl(A))) ⊆ A.  Therefore NSPCl(A) = A∪ 
NInt(NCl(NInt(A))) ⊆ A∪A = A ⊆ U. Hence A is a NGSPRCS in (Ƴ, τ). 

Example 3.6: Let Ƴ= {a, b} and τ = {0N, U, V, 1N} where U= 〈(0.3, 0.2, 0.6), (0.1, 0.2,  0.7)〉 and                     V 
= 〈(0.8, 0.2, 0.1), (0.8, 0.2, 0.1)〉. Then (Ƴ, τ) is a neutrosophic topological space. Here the NS A= 〈(0.7, 0.2, 0.3), 
(0.8, 0.2, 0.2)〉 is a NGSPRCS in (Ƴ, τ). Since A ⊆ 1N and 1N is a NROS, we have NSPCl(A) = A ⊆ 1N. But A is 
not NαCS in (Ƴ, τ). We have NCl(NInt(NCl(A))) = 1N ⊈ A.  

Theorem 3.7: Every N�CS in (Ƴ, τ) is a NGSPRCS in (Ƴ, τ) but not conversely. 

Proof: Let U be a NROS in (Ƴ, τ) such that A ⊆ U.  Since A is N�CS in (Ƴ, τ), we have NCl (A) ⊆ U because 
every NROS is NSOS in (Ƴ, τ). Therefore NSPCl(A) ⊆ NCl (A) ⊆ U, by hypothesis.  Hence A is a NGSPRCS in 
(Ƴ, τ). 

Example 3.8: Let Ƴ= {a, b} and τ = {0N, U, 1N} where U= 〈(0.4, 0.2, 0.3), (0.8, 0.6,  0.7)〉. Then (Ƴ, τ) is a 
neutrosophic topological space. Here the NS A= 〈(0.2, 0.2, 0.6), (0.1, 0.4, 0.8)〉 is a NGSPRCS in (Ƴ, τ). Since A 
⊆ 1N and 1N is a NROS, we have NSPCl(A) = A ⊆1N. But A is not N�CS in (Ƴ, τ). Since A ⊆ A and A is a 
NSOS, we have NCl(A) = 1N ⊈ A. 

Theorem 3.9: Every NPCS in (Ƴ, τ) is an NGSPRCS in (Ƴ, τ) but not conversely. 

Proof: Let U be a NROS in (Ƴ, τ) such that A ⊆ U.  Since A is NPCS in (Ƴ, τ), we have NCl(NInt(A)) ⊆ A.  
Therefore NSPCl(A) ⊆NPCl(A) = A∪ NCl(NInt(A)) ⊆ A∪A = A ⊆ U. Hence A is a NGSPRCS in (Ƴ, τ). 

Example 3.10: Let Ƴ= {a, b} and τ = {0N, U, 1N} where U= 〈(0.8, 0.4, 0.3), (0.2, 0.4, 0.7)〉. Then (Ƴ, τ) is a 
neutrosophic topological space. Here the NS A= 〈(0.8, 0.5, 0.2), (0.3, 0.4, 0.6)〉 is a NGSPRCS in (Ƴ, τ). Since A 
⊆ 1N, we have NSPCl(A) = 1N ⊆ 1N. But A is not NPCS in (Ƴ, τ). Since NCl(NInt(A)) = 1N ⊈ A. 

Theorem 3.11: Every NGCS in (Ƴ, τ) is a NGSPRCS in (Ƴ, τ) but not conversely. 

Proof: Let U be a NROS in (Ƴ, τ) such that A ⊆ U.  Since A is NGCS in (Ƴ, τ) and every NROS in (Ƴ, τ) is a 
NOS in (Ƴ, τ).  Therefore NSPCl(A) ⊆ NCl (A) ⊆ U, by hypothesis.  Hence A is a NGSPRCS in (Ƴ, τ). 

Example 3.12: Let Ƴ= {a, b} and τ = {0N, U, V, 1N} where U= 〈(0.3, 0.2, 0.6), (0.1, 0.2, 0.7)〉 and                     V 
= 〈(0.8, 0.2, 0.1), (0.8, 0.2, 0.1)〉. Then (Ƴ, τ) is a neutrosophic topological space. Here the NS A= 〈(0.7, 0.2, 0.3), 
(0.8, 0.2, 0.2)〉 is a NGSPRCS in (Ƴ, τ). Since A ⊆ 1N and 1N is a NROS, we have NSPCl(A) = A ⊆ 1N. But A is 
not NGCS in (Ƴ, τ). Since A ⊆ V and V is a NOS, we have NCl(A) = 1N ⊈ V.  

Theorem 3.13: Every NSCS in (Ƴ, τ) is a NGSPRCS in (Ƴ, τ) but not conversely. 
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Proof: Let U be a NROS in (Ƴ, τ) such that A ⊆ U.  Since A is NSCS in (Ƴ, τ).  Therefore NSPCl(A) ⊆ NSCl 
(A) = A ⊆ U, by hypothesis.  Hence A is a NGSPRCS in (Ƴ, τ). 

Example 3.14: In Example 3.12., the NS A= 〈(0.7, 0.2, 0.3), (0.8, 0.2, 0.2)〉 is a NGSPRCS in (Ƴ, τ). Since A ⊆ 
1N and 1N is a NROS, we have NSPCl(A) = A ⊆ 1N. But A is not NSCS in (Ƴ, τ). Since NInt(NCl(A)) = 1N ⊈ A. 

Theorem 3.15: Every NSPCS in (Ƴ, τ) is a NGSPRCS in (Ƴ, τ) but not conversely. 

Proof: Let U be a NROS in (Ƴ, τ) such that A ⊆ U.  Since A is NSPCS in (Ƴ, τ). Therefore NSPCl(A) = � ⊆ U, 
by hypothesis.  Hence A is a NGSPRCS in (Ƴ, τ). 

Example 3.16: Let Ƴ= {a, b} and τ = {0N, U, 1N} where U= 〈(0.4, 0.2, 0.3), (0.8, 0.6, 0.7)〉. Then (Ƴ, τ) is a 
neutrosophic topological space. Here the NS A= 〈(0.5, 0.4, 0.2), (0.8, 0.6, 0.6)〉 is a NGSPRCS in (Ƴ, τ). Since A 
⊆ 1N, we have NSPCl(A) = 1N ⊆ 1N. But A is not NSPCS in (Ƴ, τ). Since NInt(NCl(NInt(A))) = 1N ⊈ A. 

Theorem 3.17: Every NGPCS in (Ƴ, τ) is a NGSPRCS in (Ƴ, τ) but not conversely. 

Proof: Let U be a NROS in (Ƴ, τ) such that A ⊆ U.  Since A is NGPCS in (Ƴ, τ) and every NROS in (Ƴ, τ) is a 
NOS in (Ƴ, τ).  Therefore NSPCl(A) ⊆  NPCl(A)  ⊆ U, by hypothesis.  Hence A is a NGSPRCS in (Ƴ, τ). 

Example 3.18: Let Ƴ= {a, b} and τ = {0N, U, 1N} where U= 〈(0.8, 0.4, 0.2), (0.7, 0.5, 0.1)〉. Then (Ƴ, τ) is a 
neutrosophic topological space. Here the NS A= 〈(0.8, 0.4, 0.2), (0.7, 0.5, 0.1)〉 is a NGSPRCS in (Ƴ, τ). Since A 
⊆ 1N, we have NSPCl(A) = 1N ⊆ 1N. But A is not NGPCS in (Ƴ, τ). Since A ⊆ U and U is a NOS, we have 
NPCl(A) = 1N ⊈ U.  

Theorem 3.19: Every NRGCS in (Ƴ, τ) is a NGSPRCS in (Ƴ, τ) but not conversely. 
 
Proof: Let U be a NROS in (Ƴ, τ) such that A ⊆ U.  Since A is NRGCS in (Ƴ, τ).  Therefore NSPCl(A) ⊆  
NPCl(A) ⊆ NCl (A) ⊆ U, by hypothesis.  Hence A is a NGSPRCS in (Ƴ, τ). 

Example 3.20: Let Ƴ= {a, b} and τ = {0N, U, V, 1N} where U= 〈(0.5, 0.4, 0.7), (0.4, 0.4, 0.6)〉 and                     V 
= 〈(0.8, 0.4, 0.2), (0.7, 0.5, 0.1)〉. Then (Ƴ, τ) is a neutrosophic topological space. Here the NS A= 〈(0.3, 0.2, 0.7), 
(0.2, 0.3, 0.8)〉 is a NGSPRCS in (Ƴ, τ). Since A ⊆ U and U is a NROS, we have NSPCl(A) = A ⊆ U. But A is 
not NRGCS in (Ƴ, τ). Since A ⊆ U and U is a NROS, we have NCl(A) = C(U) ⊈ U. 

Theorem 3.21: Every NGSPCS in (Ƴ, τ) is a NGSPRCS in (Ƴ, τ) but not conversely. 

Proof: Let U be a NROS in (Ƴ, τ) such that A ⊆ U.  Since A is NGSPCS in (Ƴ, τ) and every NROS in (Ƴ, τ) is a 
NOS in (Ƴ, τ).  Therefore NSPCl(A) ⊆ U, by hypothesis.  Hence A is a NGSPRCS in (Ƴ, τ). 

Example 3.22: Let Ƴ= {a, b} and τ = {0N, U, 1N} where U= 〈(0.7, 0.8, 0.4), (0.4, 0.3, 0.3)〉. Then (Ƴ, τ) is a 
neutrosophic topological space. Here the NS A= 〈(0.7, 0.8, 0.4), (0.4, 0.3, 0.3)〉 is a NGSPRCS in (Ƴ, τ). Since A 
⊆ 1N, we have NSPCl(A) = 1N ⊆ 1N. But A is not NGSPCS in (Ƴ, τ). Since A ⊆ U and U is a NOS, we have 
NSPCl(A) = 1N ⊈ U. 

Theorem 3.23: Every NGPRCS in (Ƴ, τ) is a NGSPRCS in (Ƴ, τ) but not conversely. 

Proof: Let U be a NROS in (Ƴ, τ) such that A ⊆ U.  Since A is NGPRCS in (Ƴ, τ). Therefore NSPCl(A) ⊆ 
NPCl(A) ⊆ U, by hypothesis.  Hence A is a NGSPRCS in (Ƴ, τ). 

Example 3.24: Let Ƴ= {a, b} and τ = {0N, U, V, 1N} where U= 〈(0.5, 0.3, 0.6), (0.4, 0.4, 0.7)〉 and V = 〈(0.7, 0.5, 
0.3), (0.7, 0.5, 0.2)〉. Then (Ƴ, τ) is a neutrosophic topological space. Here the NS A= 〈(0.5, 0.3, 0.6), (0.4, 0.4, 
0.7)〉 is a NGSPRCS in (Ƴ, τ). Since A ⊆ U and U is a NROS, we have NSPCl(A) = A ⊆ U. But A is not 
NGPRCS in (Ƴ, τ). Since A ⊆ U and U is a NROS, we have NPCl(A) = C(U) ⊈ U. 

The following diagram, we have provided the relation between NGSPRCS and the other existed NSs.  
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 NSCS      NSPCS      NGSPCS     

 
 

   NCS     NαCS       NPCS        NGPCS            NGSPRCS 
 
 
N�CS        NGCS         NRGCS            NGPRCS 

 
In this diagram by “A           B” means A implies B but not conversely and A         B means A & B are 
independent. 

Theorem 3.25: Let (Ƴ, τ) be a NTS.  Then for every A ∈ NGSPRC(Ƴ) and for every NS B ∈ NS(Ƴ), A ⊆ B ⊆ 
NSPCl(A) implies B ∈ NGSPRC(Ƴ). 

Proof:  Let B ⊆ U and U is a NROS in (Ƴ, τ). Since A ⊆ B, then A ⊆ U.  Given A is a NGSPRCS, it follows 
that NSPCl(A) ⊆ U.  Now  B ⊆ NSPCl(A) implies NSPCl(B) ⊆ NSPCl(NPCl(A)) = NSPCl(A).  Thus, NSPCl(B) 
⊆ U.  This proves that B ∈ NGSPRC(Ƴ). 

Theorem 3.26: If A is a NROS and a NGSPRCS in (Ƴ, τ), then A is a NSPCS in (Ƴ, τ). 

Proof: Since A ⊆ A and A is a NROS in (Ƴ, τ), by hypothesis, NSPCl(A) ⊆ A. But since A ⊆ NSPCl(A). 
Therefore NSPCl(A)= A.  Hence A is a NSPCS in (Ƴ, τ). 

Theorem 3.27: Let (Ƴ, τ) be a NTS and NSPC(Ƴ) (resp. NRO(Ƴ)) be the family of all NSPCSs (resp. NROSs) 
of  Ƴ. If NSPC(Ƴ) = NRO(Ƴ) then every neutrosophic subset of Ƴ is NGSPRCS in (Ƴ, τ). 

Proof: If NSPC(Ƴ) = NRO(Ƴ) and A is any neutrosophic subset of Ƴ such that A ⊆ U where U is NROS in Ƴ. 
Then by hypothesis, U is NSPCS in Ƴ which implies that NSPCl(U) = U. Then NSPCl(U) ⊆ NSPCl(U) = U. 
Therefore A is NGSPRCS in (Ƴ, τ). 

Definition 3.28:  

Let (Ƴ, τ) be a NTS and A = {〈y, µA(y), σ A(y), νA(y)〉: y ∈ Ƴ} be the subset of Ƴ. Then  
NGSPRCl(A) = ∩{K : K is a NGSPRCS in Ƴ and A ⊆ K} and 
NGSPRInt(A) = ∪{G : G is a NGSPROS in Ƴ and G ⊆ A}. 

Lemma 3.29:  

Let A and B be subsets of (Ƴ, τ). Then the following results are obvious. 
a) NGSPRCl(0N) = 0N. 
b) NGSPRCl(1N) = 1N. 
c) A ⊆ NGSPRCl(A). 
d) A ⊆ B ⇒ NGSPRCl(A) ⊆ NGSPRCl(B). 

 

4 Neutrosophic Generalized SPR Open Sets 

Definition 4.1:  

A NS A in a NTS (Ƴ, τ) is said to be a neutrosophic generalized SPR open set (NGSPROS for short) if 
NSPInt(A) ⊇ U whenever A ⊇ U and U is a NRCS in (Ƴ, τ). Alternatively, A NS A is said to be a neutrosophic 
generalized SPR open set (NGSPROS for short) if the complement of C(A) is a NGSPRCS in (Ƴ, τ). 
The family of all NGSPROSs of a NTS(Ƴ, τ) is denoted by NGSPRO(Ƴ). 

Example 4.2: Let Ƴ= {a, b} and τ = {0N, U, 1N} where U= 〈(0.4, 0.2, 0.3), (0.8, 0.6,  0.7)〉. Then (Ƴ, τ) is a 
neutrosophic topological space. Here the NS A= 〈(0.6, 0.8, 0.2), (0.8, 0.6, 0.1)〉 is a NGSPROS in (Ƴ, τ). 

Theorem 4.3: Every NOS is a NGSPROS in (Ƴ, τ) but the converses may not be true in general. 
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Proof: Let U be a NRCS in (Ƴ, τ) such that A ⊇ U. Since A is NOS, NInt(A) = A. By hypothesis,          
NSPInt(A) ⊇ NPInt(A) = A ∩ NInt(NCl(A)) = A ∩ NCl(A) ⊇ A ∩ A = A ⊇ U. Therefore A is a NGSPROS in 
(Ƴ, τ).     

Example 4.4: In Example 4.2., the NS A= 〈(0.6, 0.8, 0.2), (0.8, 0.6, 0.1)〉 is an NGSPROS in (Ƴ, τ) but not a 
NOS in (Ƴ, τ). 

Theorem 4.5: Every NαOS is a NGSPROS in (Ƴ, τ) but the converses are not true in general. 

Example 4.6: Let Ƴ= {a, b} and τ = {0N, U, V, 1N} where U= 〈(0.3, 0.2, 0.6), (0.1, 0.2,  0.7)〉 and                     V 
= 〈(0.8, 0.2, 0.1), (0.8, 0.2, 0.1)〉. Then (Ƴ, τ) is a neutrosophic topological space. Here the NS A= 〈(0.3, 0.8, 0.7), 
(0.2, 0.8, 0.8)〉 is a NGSPROS in (Ƴ, τ). But A is not NαOS in (Ƴ, τ).  

Theorem 4.7: Every N�OS is a NGSPROS in (Ƴ, τ) but the converses are not true in general. 

Example 4.8: Let Ƴ= {a, b} and τ = {0N, U, 1N} where U= 〈(0.4, 0.2, 0.3), (0.8, 0.6,  0.7)〉. Then (Ƴ, τ) is a 
neutrosophic topological space. Here the NS A= 〈(0.6, 0.8, 0.2), (0.8, 0.6, 0.1)〉 is a NGSPROS in (Ƴ, τ). But A is 
not N�OS in (Ƴ, τ). 

Theorem 4.9: Every NPOS is a NGSPROS in (Ƴ, τ) but the converses are not true in general. 

Example 4.10: Let Ƴ= {a, b} and τ = {0N, U, 1N} where U= 〈(0.8, 0.4, 0.3), (0.2, 0.4, 0.7)〉. Then (Ƴ, τ) is a 
neutrosophic topological space. Here the NS A= 〈(0.2, 0.5, 0.8), (0.6, 0.6, 0.3)〉 is a NGSPROS in (Ƴ, τ). But A is 
not NPOS in (Ƴ, τ). 

Theorem 4.11: Every NSOS and NGOS is a NGSPROS in (Ƴ, τ) but the converses are not true in general. 

Example 4.12: Let Ƴ= {a, b} and τ = {0N, U, V, 1N} where U= 〈(0.3, 0.2, 0.6), (0.1, 0.2, 0.7)〉 and V = 〈(0.8, 0.2, 
0.1), (0.8, 0.2, 0.1)〉. Then (Ƴ, τ) is a neutrosophic topological space. Here the NS A= 〈(0.3, 0.8, 0.7), (0.2, 0.8, 
0.8)〉 is a NGSPROS in (Ƴ, τ). But A is not NSOS and NGOS in (Ƴ, τ). 

Theorem 4.13: Every NSPOS is a NGSPROS in (Ƴ, τ) but the converses are not true in general. 

Example 4.14: Let Ƴ= {a, b} and τ = {0N, U, 1N} where U= 〈(0.4, 0.2, 0.3), (0.8, 0.6, 0.7)〉. Then (Ƴ, τ) is a 
neutrosophic topological space. Here the NS A= 〈(0.2, 0.6, 0.5), (0.6, 0.4, 0.8)〉 is a NGSPROS in (Ƴ, τ). But A is 
not NSPOS in (Ƴ, τ). 

Theorem 4.15: Every NGPOS is a NGSPROS in (Ƴ, τ) but the converses are not true in general. 

Example 4.16: Let Ƴ= {a, b} and τ = {0N, U, 1N} where U= 〈(0.8, 0.4, 0.2), (0.7, 0.5, 0.1)〉. Then (Ƴ, τ) is a 
neutrosophic topological space. Here the NS A= 〈(0.2, 0.6, 0.8), (0.1, 0.5, 0.7)〉 is a NGSPROS in (Ƴ, τ). But A is 
not NGPOS in (Ƴ, τ). 

Theorem 4.17: Every NRGOS is a NGSPROS in (Ƴ, τ) but the converses are not true in general. 

Example 4.18: Let Ƴ= {a, b} and τ = {0N, U, V, 1N} where U= 〈(0.5, 0.4, 0.7), (0.4, 0.4, 0.6)〉 and V = 〈(0.8, 0.4, 
0.2), (0.7, 0.5, 0.1)〉. Then (Ƴ, τ) is a neutrosophic topological space. Here the NS A= 〈(0.7, 0.8, 0.3), (0.1, 0.5, 
0.7)〉 is a NGSPROS in (Ƴ, τ). But A is not NRGOS in (Ƴ, τ). 

Theorem 4.19: Every NGSPOS is a NGSPROS in (Ƴ, τ) but the converses are not true in general. 

Example 4.20: Let Ƴ= {a, b} and τ = {0N, U, 1N} where 〈(0.7, 0.8, 0.4), (0.4, 0.3, 0.3)〉. Then (Ƴ, τ) is a 
neutrosophic topological space. Here the NS A= 〈(0.4, 0.2, 0.7), (0.3, 0.7, 0.4)〉 is a NGSPROS in (Ƴ, τ). But A is 
not NGSPOS in (Ƴ, τ). 

Theorem 4.21: Every NGPROS is a NGSPROS in (Ƴ, τ) but the converses are not true in general. 

Example 4.22: Let Ƴ= {a, b} and τ = {0N, U, V, 1N} where U= 〈(0.5, 0.3, 0.6), (0.4, 0.4, 0.7)〉 and V = 〈(0.7, 0.5, 
0.3), (0.7, 0.5, 0.2)〉. Then (Ƴ, τ) is a neutrosophic topological space. Here the NS A= 〈(0.6, 0.7, 0.5), (0.7, 0.6, 
0.4)〉 is a NGSPROS in (Ƴ, τ). But A is not NGPROS in (Ƴ, τ). 

Theorem 4.23: Let (Ƴ, τ) be a NTS. Then for every A ∈ NGSPRO(Ƴ) and for every B ∈ NS(Ƴ),                
NSPInt(A) ⊆ B ⊆ A implies B ∈ NGSPRO(Ƴ). 
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Proof: Let A be any NGSPROS of (Ƴ, τ) and B be any NS of Ƴ.  By hypothesis NSPInt(A) ⊆ B ⊆ A.  Then 
C(A) is an NGSPRCS in (Ƴ, τ) and C(A) ⊆ C(B) ⊆ NSPCl(C(A)).  By Theorem 3.25., C(B) is an NGSPRCS in 
(Ƴ, τ).  Therefore B is an NGSPROS in (Ƴ, τ).  Hence B ∈ NGSPRO(Ƴ). 

Theorem 4.24: A NS A of a NTS (Ƴ, τ) is a NGSPROS in (Ƴ, τ) if and only if F ⊆ Nspint(A) whenever F is a 
NRCS in (Ƴ, τ) and F ⊆ A. 

Proof: Necessity: Suppose A is a NGSPROS in (Ƴ, τ).  Let F be a NRCS in (Ƴ, τ) such that F ⊆ A.  Then C(F) 
is a NROS and C(A) ⊆ C(F). By hypothesis CA) is a NGSPRCS in (Ƴ, τ), we have NSPCl(C(A)) ⊆ C(F). 
Therefore F ⊆ Nspint(A). 
Sufficiency: Let U be a NROS in (Ƴ, τ) such that C(A) ⊆ U. By hypothesis, C(U) ⊆ Nspint(A). Therefore 
NSPCl(C(A)) ⊆ U and C(A) is a NGSPRCS in (Ƴ, τ).  Hence A is a NGSPROS in (Ƴ, τ). 

Theorem 4.25: Let (Ƴ, τ) be a NTS and NSPO(Ƴ) (resp. NGSPRO(Ƴ)) be the family of all NSPOSs                 
(resp. NGSPROSs) of Ƴ. Then NSPO(Ƴ) ⊆ NGSPRO(Ƴ). 

Proof: Let A ∈ NSPO(Ƴ). Then C(A) is NSPCS and so NGSPRCS in (Ƴ, τ). This implies that A is NGSPROS 
in   (Ƴ, τ). Hence A ∈ NGSPRO(Ƴ). Therefore NSPO(Ƴ) ⊆ NGSPRO(Ƴ). 

5 Separation Axioms of Neutrosophic Generalized SPR Closed Sets  

Definition 5.1:  

If every NGSPRCS in (Ƴ, τ) is a NSPCS in (Ƴ, τ), then the space (Ƴ, τ) can be called a neutrosophic SPRT1/2 
(NSPRT1/2 for short) space. 

Theorem 5.2: An NTS (Ƴ, τ) is a NSPRT1/2 space if and only if NSPOS(Ƴ) = NGSPRO(Ƴ). 

Proof: Necessity: Let (Ƴ, τ) be a NSPRT1/2 space.  Let A be a NGSPROS in (Ƴ, τ).  By hypothesis, C(A) is a 
NGSPRCS in (Ƴ, τ) and therefore A is a NSPOS in (Ƴ, τ).  Hence NSPO(Ƴ) = NGSPRO(Ƴ). 
Sufficiency: Let NSPO(Ƴ) = NGSPRO(Ƴ).  Let A be a NGSPRCS in (Ƴ, τ).  Then C(A) is a NGSPROS in (Ƴ, 
τ).  By hypothesis, C(A) is a NSPOS in (Ƴ, τ) and therefore A is a NSPCS in  (Ƴ, τ).  Hence (Ƴ, τ) is a NSPRT1/2 
space. 

Definition 5.3: A NTS (Ƴ, τ) is said to be a neutrosophic SPRT*
1/2 space (NSPRT*

1/2 space for short) if every 
NGSPRCS is a NCS in (Ƴ, τ). 

Remark 5.4: Every NSPRT*
1/2 space is a NSPRT1/2 space. 

Proof:  Assume (Ƴ, τ) is a NSPRT*
1/2 space.  Let A be a NGSPRCS in (Ƴ, τ).  By hypothesis, A is an NCS.  

Since every NCS is a NSPCS, A is a NSPCS in (Ƴ, τ).  Hence (Ƴ, τ) is a NSPRT1/2 space. 

Example 5.5: Let Ƴ= {a, b} and let τ = {0N, U, 1N} where U= 〈(0.5, 0.4, 0.7), (0.4, 0.5,  0.6)〉. Then (Ƴ, τ) is a 
NSPRT1/2 space, but it is not NSPRT*

1/2 space.  Here the NS A= 〈(0.2, 0.3, 0.8), (0.3, 0.4, 0.8)〉 is a NGSPRCS 
but not a NCS in (Ƴ, τ). 

Theorem 5.6: Let (Ƴ, τ) be a NSPRT*
1/2 space then, 

(i) the union of NGSPRCSs is NGSPRCS in (Ƴ, τ) 
(ii) the intersection of NGSPROSs is NGSPROS in (Ƴ, τ) 

Proof: (i)  Let {Ai}i∈J be a collection of NGSPRCSs in a NSPRT*
1/2 space (Ƴ, τ). Thus, every NGSPRCSs is a 

NCS. However, the union of NCSs is a NCS in (Ƴ, τ). Therefore the union of NGSPRCSs is NGSPRCS in (Ƴ, 
τ). 

(iii) proved by taking the complement in (i). 
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