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ABSTRACT 

 

Computer vision is an interdisciplinary field focused on enabling computers to derive high-level 

understanding from digital images and videos. In recent years, deep learning has significantly 

accelerated advancements in this domain. One key task in computer vision, known as semantic 

segmentation, involves labelling each pixel in an image with a corresponding class based on what it 

represents.In regions rich in oil and gas reserves, large underground salt deposits are commonly 

found. However, accurately identifying these salt formations remains a challenge. Traditional 

seismic imaging still relies heavily on expert human interpretation, leading to subjective and highly 

variable results. More critically, inaccuracies in salt mapping can pose significant risks to oil and 

gas drillers.This paper addresses this challenge using UNET, an end-to-end fully convolutional 

network (FCN) designed for semantic segmentation. The seismic image data and corresponding 

masks are loaded into the system and processed by the UNET model. The network extracts features 

through successive convolution and pooling layers, gradually down sampling the image. It then 

reconstructs the original image using transposed convolutions to up sample the feature map 

Once trained, the UNET model can accurately analyse new seismic images and delineate areas 

containing salt deposits, providing a more reliable and automated solution for salt identification in 

seismic imaging. 
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INTRODUCTION 

Seismic imaging plays a crucial role in visualizing underground structures and is widely used 

for discovering hydrocarbon fuel reserves. It operates by emitting sound waves that reflect off 

subsurface structures, with the reflected signals detected at the surface by receiver devices 

known as geophones. These signals are then processed to generate a three-dimensional 

representation of underground rock formations. Seismic images primarily highlight the 

boundaries between different rock types, as the strength of the reflected signal is proportional 

to the contrast in physical properties at their interfaces. However, while seismic imaging 

effectively delineates these boundaries, it provides limited direct information about the 

internal composition of the rocks themselves. 

In hydrocarbon exploration, seismic images help identify potential reservoir rocks, making 

salt deposit detection particularly important. Salt domes can deform surrounding rock layers, 

creating natural traps that accumulate oil and gas. The physical characteristics of salt, such as 

its lower density compared to adjacent rocks, cause strong reflections at its boundaries. While 

salt deposits often exhibit clear, well-defined edges that are recognizable to the human eye, 

their identification remains a complex task that relies on expert geologists. Given the massive 

volume of seismic data, salt-body delineation can take weeks, even with a team of 

professionals. This challenge makes the problem well-suited for deep learning techniques, 

which excel at handling large-scale image analysis tasks. 

Deep learning has significantly advanced the field of computer vision, particularly in 

semantic segmentation—an approach that assigns a class label to each pixel in an image. This 
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technology has the potential to revolutionize seismic imaging by automating salt-body 

identification, reducing subjectivity, and improving efficiency. 

This paper aims to address this challenge using UNET, an end-to-end fully convolutional 

network (FCN) specifically designed for semantic segmentation. The system processes 

seismic images and corresponding masks through the UNET model, which extracts features 

via successive convolution and pooling layers, progressively downsampling the data. It then 

reconstructs the original image using upsampling techniques, such as transposed 

convolutions. Once trained, the UNET model can analyze any seismic image and accurately 

delineate areas containing salt deposits, offering a reliable and automated solution for salt 

identification in seismic imaging. 

LITERATURE SURVEY 

Traditional methods for salt identification in seismic images rely on teams of expert 

geologists working for weeks to complete full-survey salt-body delineation due to the vast 

amount of seismic data. However, this approach presents several challenges: 

• Subjectivity and Variability – Interpretations can differ among experts, leading to 

inconsistent results. 

• Limited Availability of Expertise – Skilled professionals may not always be 

accessible. 

• Safety Concerns – Inaccuracies in salt mapping can pose significant risks to oil and 

gas drillers. 

Due to these limitations, seismic image analysis and salt identification have become areas of 

active research. Traditionally, seismic image analysis followed a hand-crafted approach, 

where different feature extraction techniques were manually designed and applied to process 

seismic data. 

One of the earliest works in this domain by Pitas and Kotropoulos [1] introduced a method 

based on texture analysis for semantic segmentation of seismic images, an approach that 

remains relevant today. Harper and Clapp [2] explored the use of various seismic image 

attributes to detect salt deposits, while Shafiq et al. proposed a similar method based on new 

seismic image attribute calculations. 

Amin and Deriche [3] developed a technique using a 3D multi-directional edge detector to 

enhance salt-body identification. Wu [4] introduced a probability-based method to determine 

salt sediment boundaries, whereas Di et al. [5] proposed a multi-attribute clustering approach 

using the k-means algorithm for salt delineation. 

More recently, Wrona et al. [6] leveraged machine learning techniques to classify four 

distinct seismic structures by extracting and analysing seismic attributes from images. 

These advancements highlight the ongoing shift from traditional, labour-intensive methods 

toward automated, data-driven approaches for salt identification in seismic imaging. 

 

Design Methodology of Seismic Image Analysis for Salt Detection: 
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Figure 1 illustrates the architecture of the proposed system, which processes seismic images 

for salt identification. The system first resizes the input seismic image to 128 × 128 pixels. 

Next, the pixel values are normalized to a range of 0–1 by dividing by 255, which enhances 

computational efficiency and preserves image features, enabling the model to make accurate 

predictions. The preprocessed image is then fed into the UNET model, which has been 

trained on the TGS dataset. The model performs semantic segmentation, producing a 

reconstructed image that accurately delineates the areas containing salt deposits. 

 

 

Figure1: System Architecture for Salt Identification in Seismic Images  

Figure 2 illustrates the architecture of the UNET model, originally developed by Olaf 

Ronneberger et al. for biomedical image segmentation. The architecture consists of two main 

paths:The Contracting Path (Encoder) – This path captures contextual information within the 

image. It consists of a series of convolutional layers followed by max pooling layers, 

progressively down sampling the input.The Expanding Path (Decoder) – This symmetric path 

enables precise localization by using transposed convolutions, gradually up sampling the 

feature maps to reconstruct the original image dimensions.UNET is an end-to-end fully 

convolutional network (FCN), meaning it consists solely of convolutional layers without any 

dense (fully connected) layers. This allows the model to accept images of any size. While the 

original UNET architecture processes input images of 572×572×3, in this implementation, we 

use 128×128×3 images. As a result, the feature map sizes at various stages differ from the 

original paper, but the fundamental components of the architecture remain unchanged. 
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Figure2: UNET architecture 

Figure 3 illustrates the modified UNET architecture. In this architecture, 2@Conv layers 

indicate the application of two consecutive convolutional layers. The notation is as follows: 

• c1, c2, ..., c9 – Output tensors of convolutional layers. 

• p1, p2, p3, p4 – Output tensors of max pooling layers. 

• u6, u7, u8, u9 – Output tensors of upsampling (transposed convolution) layers. 

The left side of the architecture represents the contracting path (Encoder), where regular 

convolutional and max pooling layers are applied. As the image passes through this path, its 

spatial size gradually decreases while its depth increases, transitioning from 128×128×3 to 

8×8×256. This process enables the network to learn "what" is present in the image but results 

in the loss of "where" information.The right side represents the expanding path (Decoder), 

which applies transposed convolutions along with regular convolutions. Here, the spatial size 

progressively increases while the depth decreases, restoring the image from 8×8×256 back to 

128×128×1. The decoder is responsible for recovering the "where" information, ensuring 

precise localization of features.To improve accuracy, skip connections are used at each 

decoder stage. These connections concatenate feature maps from the encoder at the same 

level: 

• u6 = u6 + c4 

• u7 = u7 + c3 

• u8 = u8 + c2 

• u9 = u9 + c1 

After each concatenation, two consecutive convolutional layers are applied to refine the 

feature maps and enhance precision. This design gives the architecture its characteristic U-

shape, leading to the name UNET. 

At a high level, the process follows this transformation: 

Input (128×128×1) → Encoder (8×8×256) → Decoder → Output (128×128×1). 
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Figure.3: Modified UNET architecture  

Convolutional Layer: 

In Figure.4, at the core of the UNET architecture is the convolutional layer, which defines the 

network's functionality. This layer performs a process known as convolution, aimed at extracting 

high-level features—such as edges and patterns—from the input image. 

 

Figure.4: Convoluting a 5x5x1 image with a 3x3x1 kernel to get a 3x3x1 convolved feature 

Convolution in UNET 

In the UNET architecture, convolution is a fundamental operation that functions similarly to a 

linear transformation in traditional neural networks. As illustrated in Figure 4, this process 

involves multiplying a set of weights with the input data. Since UNET is designed for two-

dimensional inputs, this multiplication occurs between a 2D array of input data and a 2D 

array of weights, known as a filter or kernel.The filter is smaller than the input and slides 

across it, performing an element-wise multiplication between the filter-sized section of the 

input and the filter itself. The results are then summed to produce a single scalar value, a 

process referred to as the dot product. Because each application of the filter generates a single 

value, the operation is sometimes called the scalar product.Using a filter smaller than the 

input is intentional, as it allows the same set of weights to be applied across different regions 

of the input. The filter moves systematically from left to right and top to bottom, scanning 

overlapping sections of the image.This approach is highly effective because a filter designed 

to detect a specific feature (such as edges or textures) can identify that feature anywhere in 
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the image, rather than at a fixed location. This property is known as translation invariance, 

meaning the model focuses on whether a feature is present rather than where it appears in the 

image.Each time the filter is applied to the input, a single value is generated. As the filter 

moves across the image, it produces a 2D array of output values, forming a feature map that 

highlights the detected patterns. 

Pooling Layer 

Like the convolutional layer, the pooling layer plays a crucial role in processing the extracted 

features. Pooling is responsible for reducing the spatial size of the feature maps by 

systematically selecting specific values within a window and discarding the rest. This reduces 

computational complexity and helps extract dominant features that are rotation- and position-

invariant, improving the model’s ability to generalize effectively.There are two main types of 

pooling: 

1. Max Pooling – Retains only the maximum value within each filter-sized region of the 

image, as shown in Figure 5. 

2. Average Pooling – Computes the average value of all pixels in the filter-sized region. 

Both methods help refine the feature maps while reducing their dimensions, making the 

training process more efficient and effective. 

 

Figure 5:3x3 max pooling over 5x5 convolved feature 

1) Max Pooling vs. Average Pooling 

Max Pooling not only aids in dimensionality reduction but also acts as a noise suppressor by 

eliminating noisy activations. This helps in de-noising the data while preserving dominant 

features. On the other hand, Average Pooling primarily focuses on dimensionality reduction, 

without explicitly removing noise. Consequently, Max Pooling is often preferred over 

Average Pooling, as it enhances the model’s ability to extract robust features. 

2) ReLU (Rectified Linear Unit) 

The Rectified Linear Unit (ReLU) is the most widely used activation function in deep 

learning models. It outputs zero for any negative input, while retaining the same value for 

positive inputs.ReLU activation functions were originally introduced to differentiate between 

specific excitation and unspecific inhibition in the neural abstraction pyramid, which was 
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trained to perform multiple computer vision tasks. Unlike traditional sigmoid or tanh 

activation functions, ReLU allows deep neural networks to be trained efficiently without 

requiring unsupervised pre-training.Due to its ability to prevent vanishing gradient problems, 

ReLU enables faster and more effective training of deep neural networks on large and 

complex datasets. 

3) Up sampling with Transposed Convolutions 

Unlike traditional image classification, where the output is a class label or bounding box, 

semantic segmentation generates a full-resolution image, where each pixel is classified into a 

specific category. However, using a standard convolutional network with pooling layers and 

dense layers results in the loss of spatial (WHERE) information, retaining only the semantic 

(WHAT) information. 

To recover spatial information, up sampling is required. Several techniques exist for up 

sampling images, including: 

• Bilinear Interpolation 

• Cubic Interpolation 

• Nearest Neighbor Interpolation 

• Unpooling 

• Transposed Convolution 

Among these, transposed convolution is the preferred method in state-of-the-art neural 

networks for image segmentation. 

4) Transposed Convolution 

Transposed convolution follows the same connectivity pattern as standard convolution, but in 

reverse. This operation allows for up sampling while maintaining learnable weights, 

eliminating the need for predefined interpolation methods.Despite its name, transposed 

convolution is not the direct transpose of a convolution operation. Instead, it maps a low-

resolution input to a high-resolution output by expanding the input in a structured manner. 

Unlike traditional convolution (which follows a many-to-one mapping), transposed 

convolution works in a one-to-many fashion, helping to restore fine details in the 

image.Some explanations of transposed convolution describe an approach where zeros are 

inserted between input values before applying a normal convolution to simulate the up 

sampling effect. However, this method is computationally inefficient compared to directly 

learning the transposed convolution filters. 

Results and Discussion 

Testing is a critical phase in software development, ensuring that the system functions as 

expected and meets the specified requirements. It involves executing the program to identify 

gaps, errors, or missing functionalities in comparison to expected outcomes. Effective testing 

helps in debugging, validating, and improving the system's overall reliability. 
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Table 1: Test Cases 

S.No Filter Size Pooling 

Window Size 

Dropout Accuracy on 

test set 

1 2x2 2x2 20% 85.2 

2 4x4 2x2 10% 83.6 

3 4x4 2x2 5% 84.3 

4 3x3 3x3 10% 86.7 

5 3x3 3x3 15% 87.3 

6 3x3 2x2 5% 92.8 

 

Hyperparameter Optimization and UNET Functionality 

Through extensive testing, the optimal hyperparameters for the UNET model were identified, 

as listed in the last row of Table 1. 

The UNET architecture operates in two primary phases: 

1. Learning Phase – During training, the model learns to perform semantic segmentation by 

analyzing patterns in the dataset. 

2. Operating Phase – In inference mode, after applying the same pre-processing steps as used 

during training, the UNET model takes a new seismic image as input and predicts the salt 

deposit regions.Dataset Selection for Model Training 

The dataset used for training the model is provided by TGS, a leading Geoscience and Data 

company specializing in seismic imaging and 3D subsurface renderings to locate oil and gas 

reservoirs.This publicly available dataset contains 4,000 seismic image patches, each with a 

resolution of 101x101 pixels, along with their corresponding segmentation masks (ground 

truth labels). These masks help train the deep learning model to accurately delineate salt 

deposits in seismic images. 

Understanding the TGS Dataset 

Figure 6 illustrates an example from the TGS dataset: 

• The left image is a seismic scan. A black boundary has been overlaid for clarity to indicate 

the salt and non-salt regions (this boundary is not part of the original image). 

• The right image represents the segmentation mask, serving as the ground truth label. In this 

mask: 

o White regions denote salt deposits 

o Black regions represent areas with no salt 
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The goal of the UNET model is to predict this mask given a seismic image, effectively 

segmenting salt-rich regions from the subsurface. 

 

Figure 6: Testing the UNET with new images 

  

 

Figure 7: Graph showing model loss  

Figure 7, the graph shows how the binary cross entropy or log loss changes after each epoch. We can 

see how the loss decreases both in the training set and test/validation set. The x marked spot is the 

best model which has been saved. The results can be tabulated as shown in Table 2. 
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Table 2: Performance of the Model 

Total Number of Samples 4000 

Number of Training Samples 3600 (90%) 

Number of Testing Samples 400 (10%) 

Accuracy on training set 95.5% 

Accuracy on testing set 92.8% 

UNET error 7.2% 

 

Conclusion 

Salt identification from seismic images is a complex task due to the unique characteristics of 

salt sediments. While their lower density compared to surrounding rocks can create a sharp 

reflection at the boundary, this very feature makes their identification both simple and 

challenging. Additionally, the sheer volume of seismic data necessitates weeks of manual 

analysis by expert geologists to fully delineate salt bodies. This traditional method is 

subjective, prone to high variability, and, more critically, can lead to potentially hazardous 

situations for oil and gas drillers due to its inconsistent reliability.To address these 

challenges, automation of the process is crucial. This paper achieves automation by utilizing 

UNET, an end-to-end fully convolutional network (FCN) designed for semantic 

segmentation. The model is trained to analyse seismic images and accurately identify salt 

deposit regions.  
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