
A Comparative Study of Software Development Models: Evolution,

Strengths, and Modern Applications

Dr. Ajay D. Shinde

Chhatrapati Shahu Institute of Business Education and Research, Kolhapur, Maharashtra.

Abstract

Choosing the right software development model is critical to the success of modern software

engineering projects. Over time, various development approaches have evolved—from traditional

models like Waterfall and V-Model to contemporary, iterative methodologies such as Agile, Scrum,

and DevOps. This article provides a detailed review and comparative analysis of software development

methodologies, highlighting their core principles, benefits, limitations, and real-world use cases. By

comparing each model based on key criteria—such as flexibility, customer collaboration, risk

mitigation, and scalability—this study offers practical insights for software engineers, project managers,

and IT organizations. Additionally, it discusses the rise of hybrid software development models, which

integrate the strengths of multiple methodologies to address the complexities of today’s fast-moving

digital landscape.

Keywords: Software development, Software Development Models, Watearfall model, Iterative models,

Agile models

1. Introduction

The field of software engineering has evolved significantly over the past several decades, driven by the

increasing complexity and scale of modern software systems. As these systems grow in functionality

and integration, the demand for structured software development processes has intensified. These

processes, commonly referred to as software development models, offer systematic frameworks for

planning, executing, and delivering high-quality software solutions. A well-defined development model

establishes a clear sequence of activities, delineates stakeholder roles, identifies key deliverables,

outlines validation and verification methods, and sets expectations for outcomes at each project phase

(Pressman & Maxim, 2020).

Historically, the evolution of software development models has mirrored the evolution of software

needs. In the early stages of computing, when systems were relatively simple and hardware limitations

were severe, software development was largely ad hoc. However, as software became integral to

business operations, defence systems, healthcare, and infrastructure, it demanded higher reliability,

scalability, and maintainability. This gave rise to formalized development models, beginning with

linear, phase-driven methodologies such as the Waterfall model, introduced by Winston W. Royce in

1970 (Royce, 1970).

The Waterfall model was one of the earliest structured software process models, advocating a sequential

design process in which progress flows in one direction—like a waterfall—through the phases of

requirements, design, implementation, testing, deployment, and maintenance. While it was ground

breaking at the time, the model faced criticism for its rigidity and lack of support for iterative feedback,

making it unsuitable for projects with evolving requirements (Sommerville, 2016). This limitation led

to the exploration of more flexible and iterative approaches.

Incremental and iterative models addressed many of these shortcomings by enabling the gradual

development of a system through multiple cycles, allowing for user feedback and changes to be

incorporated more easily. Barry Boehm’s Spiral model (1988) introduced a risk-driven approach,

combining iterative development with systematic risk analysis and mitigation at each stage. This was a

significant evolution, as it recognized that uncertainty is inherent in software projects and are managed

proactively.

As the software industry entered the 21st century, the demand for faster delivery, better user

involvement, and greater responsiveness to change drove the emergence of Agile methodologies. In

2001, a group of software practitioners published the Agile Manifesto, advocating for individuals and

interactions over processes and tools, working software over comprehensive documentation, customer

Journal of Informetrics(ISSN 1875-5879) Volume 19 Issue 2

Page No: 259

collaboration over contract negotiation, and responding to change over following a plan (Beck et al.,

2001). Agile development encourages frequent delivery of working software, close customer

collaboration, and cross-functional teams, all of which have made it the de facto standard in many

modern software organizations.

Frameworks such as Scrum, Kanban, and Extreme Programming (XP), which fall under the Agile

umbrella, have further refined how Agile principles are implemented. These methodologies emphasize

transparency, inspection, and adaptation through short, iterative development cycles known as sprints.

They allow teams to adjust their course of action based on real-time feedback and changing business

priorities, significantly increasing project success rates in dynamic environments (Highsmith, 2002).

Alongside Agile, the advent of DevOps has further transformed software development by bridging the

gap between development and operations teams. Traditionally, these two functions operated in silos,

leading to inefficiencies and delayed releases. DevOps introduces automation, continuous integration

and delivery (CI/CD), and a culture of shared responsibility, enabling organizations to release high-

quality software at a much faster pace (Bass, Weber, & Zhu, 2015). It complements Agile by extending

its principles into the deployment and maintenance phases, ensuring that software not only developed

efficiently but also deployed and operated reliably.

Despite these advancements, no single model is universally optimal. The appropriateness of a software

development model depends heavily on project-specific factors such as team size, project complexity,

domain criticality, stakeholder involvement, risk tolerance, and time-to-market requirements. For

example, government or aerospace projects may favour more formal, documentation-heavy models like

the V-Model or Waterfall due to regulatory compliance needs. In contrast, start-ups developing rapidly

evolving products may benefit more from Agile or Lean methodologies, which allow for greater

experimentation and faster iteration.

Another significant development is the growing adoption of hybrid models, which combine the

strengths of different methodologies to suit specific organizational contexts. For instance, some

companies use a Waterfall approach for the initial planning and requirements phases, followed by Agile

sprints during development. Others integrate DevOps practices with Agile frameworks to ensure

continuous delivery and operational feedback. These hybrid approaches acknowledge that real-world

software development rarely fits neatly into a single paradigm.

The need to study and compare software development models further underscored by the failure rates

of software projects. According to the Standish Group's CHAOS Report, a significant percentage of

software projects either fail to meet their objectives or are abandoned altogether (Standish Group,

2015). One major contributor to these failures is the misalignment between the chosen development

model and the actual needs of the project. By understanding the theoretical foundations, strengths,

limitations, and practical considerations of each model, practitioners can make informed decisions and

improve project outcomes.

This paper seeks to provide a comprehensive analysis of prominent software development models,

spanning from traditional to modern approaches. It will review each model’s core principles,

advantages, and limitations, and offer a comparative assessment based on critical success factors such

as adaptability, customer involvement, risk management, scalability, and cost-effectiveness. The paper

will also explore recent trends in hybrid and emerging models, drawing on academic literature and real-

world case studies where available.

By synthesizing existing research and presenting a structured comparison, this study aims to serve as a

practical guide for software engineers, project managers, and IT leaders. Whether designing enterprise

software, mobile applications, embedded systems, or cloud-based services, the insights from this

research can help stakeholders choose and tailor development models that align with their technical

requirements and organizational goals.

2. Literature Review

The body of literature on software development methodologies is extensive, representing decades of

academic research and industry experience. This section offers a curated review of significant

Journal of Informetrics(ISSN 1875-5879) Volume 19 Issue 2

Page No: 260

contributions from foundational texts, comparative analyses, and recent studies that illuminate the

evolution and practical application of various software development models. By synthesizing insights

from both historical and contemporary sources, this review deepens our understanding of how these

methodologies have adapted to meet the changing demands of software engineering.

2.1 Evolution of Software Development Models

The evolution of software development models has closely tied to the changing needs of software

systems and user demands. Royce (1970) often credited with formalizing the Waterfall model, a

sequential approach that assumes all requirements are known upfront. Although Royce himself

acknowledged the limitations of the pure linear model, it became widely adopted in early software

projects due to its simplicity and clarity of phases.

Pressman and Maxim (2020) provide a comprehensive overview of traditional models such as

Waterfall, V-Model, and Incremental development. They argue that these models are best suited for

projects where the requirements are stable and well understood. Sommerville (2016) echoes this view

and notes that these models offer strong control and documentation but lack the flexibility needed in

more dynamic development contexts.

As software requirements became more complex and subject to change, researchers began to advocate

for more flexible and iterative models. Boehm (1988) introduced the Spiral model, which combined

iterative development with a systematic approach to risk management. His model was one of the first

to explicitly incorporate risk analysis into the development cycle, influencing many later models.

2.2 Rise of Agile and Lightweight Methodologies

In the early 2000s, dissatisfaction with heavyweight methodologies gave rise to a new class of

development methods known collectively as Agile. The Agile Manifesto (Beck et al., 2001)

emphasized individuals and interactions, working software, customer collaboration, and responsiveness

to change. This marked a paradigm shift in software engineering, with a strong focus on delivering

value incrementally and involving customers throughout the process.

Agile methodologies have since become dominant in the software industry. Highsmith (2002)

categorized Agile as part of a broader “adaptive” movement in software development, contrasting it

with predictive, plan-driven models. Frameworks like Scrum and Extreme Programming (XP) have

been extensively studied. For example, Schwaber and Beedle (2002) explained how Scrum enables

short, focused development cycles (sprints) and regular retrospectives, which improve adaptability and

team performance.

Empirical studies have shown the effectiveness of Agile in reducing development time and improving

product quality. A study by Chow and Cao (2008) identified critical success factors for Agile adoption,

including management support, team capability, and clear communication. However, they also noted

that Agile is not universally applicable; it may not perform well in environments with rigid regulatory

constraints or distributed teams lacking real-time collaboration tools.

2.3 Integration of DevOps Practices

As Agile matured, it increasingly overlapped with DevOps, a movement focused on integrating

development and operations to ensure faster and more reliable software delivery. According to Bass,

Weber, and Zhu (2015), DevOps promotes automation, continuous integration and delivery (CI/CD),

and a culture of collaboration that spans the entire software lifecycle.

Recent studies highlight DevOps as a natural extension of Agile, enabling continuous feedback loops

and operational visibility. Forsgren, Humble, and Kim (2018) in their Accelerate research reported

that high-performing teams practicing DevOps deploy software faster and with fewer failures than those

using traditional release methods. This has prompted many organizations to blend Agile and DevOps

into hybrid workflows tailored to their specific needs.

2.4 Comparative Studies of Development Models

Numerous researchers have compared software development models using structured criteria. Awad

(2005) compared Agile and traditional models based on factors such as team size, complexity, and risk

Journal of Informetrics(ISSN 1875-5879) Volume 19 Issue 2

Page No: 261

tolerance, concluding that no single model is superior in all contexts. Similarly, Jalote (2005) advocated

for a situational approach, suggesting that model selection should consider project size, criticality, and

volatility of requirements.

More recent work by Puri and Kaur (2021) introduced a multi-criteria decision-making framework

for selecting software development models, incorporating factors like stakeholder involvement, budget

constraints, and project duration. Their findings suggest that hybrid models are increasingly preferred

in complex, real-world projects where flexibility and structure must be balanced.

Santos et al. (2018) conducted a systematic literature review and found that Agile methods tend to

outperform traditional methods in terms of customer satisfaction and adaptability, but may fall short in

environments requiring heavy documentation or long-term predictability. Their review also noted the

growing importance of cultural and organizational factors in determining the success of a development

model.

2.5 Emerging Trends and Hybrid Models

Recent literature emphasizes the emergence of hybrid models that combine elements from multiple

methodologies to address specific challenges. For instance, the Water-Scrum-Fall model applies

Waterfall principles during the planning and release phases while adopting Scrum during the

development phase (Denning, 2016). This approach is common in large enterprises with legacy systems

and formal governance structures.

Scaled frameworks like SAFe (Scaled Agile Framework) and LeSS (Large-Scale Scrum) have also

been proposed to extend Agile practices to enterprise-level projects. These frameworks introduce

hierarchical roles, coordination mechanisms, and planning layers to ensure that Agile can be scaled

without losing its core principles (Leffingwell, 2011).

Academic research is beginning to explore the impact of emerging technologies such as artificial

intelligence and cloud-native architectures on development practices. These technologies demand more

responsive and automated development pipelines, reinforcing the importance of Agile-DevOps

integration (Leite et al., 2020).

3. Overview of Software Development Models

Software development models serve as structured methodologies to guide the planning, execution, and

delivery of software systems. Over the years, various models have emerged—each tailored to specific

project types, team structures, customer needs, and risk tolerances. This section provides an overview

of the most widely recognized models, categorized into traditional, iterative, Agile-based, and hybrid

approaches.

3.1 Waterfall Model

The Waterfall model is a linear, sequential approach in which each phase of the software development

life cycle (SDLC)—requirements, design, implementation, testing, deployment, and maintenance—

must be completed before the next begins (Royce, 1970). It is best suited for projects with well-

understood requirements and low likelihood of change.

Strengths:
• Clear documentation and milestones.

• Easy to manage and monitor progress.

• Suitable for regulated industries or projects with fixed scope.

Limitations:
• Inflexible to changing requirements.

• Testing is deferred until after development.

• Poor performance in dynamic or complex environments.

3.2 V-Model (Verification and Validation Model)

Journal of Informetrics(ISSN 1875-5879) Volume 19 Issue 2

Page No: 262

An extension of the Waterfall model, the V-Model emphasizes rigorous testing at each development

stage. Each development phase has a corresponding testing phase, promoting early defect detection

(Pressman & Maxim, 2020).

Strengths:

• Strong focus on verification and validation.

• Useful for safety-critical and regulated systems (e.g., aerospace, healthcare).

• High level of discipline and quality assurance.

Limitations:
• Same rigidity as Waterfall.

• Poor adaptability to changes.

• High initial effort in planning and documentation.

3.3 Incremental Model
The Incremental model divides the system into smaller functional components that are developed and

delivered in increments. Each increment builds upon the previous one, incorporating feedback along

the way.

Strengths:
• Delivers functional parts early.

• Easier to manage risk and scope changes.

• Supports partial implementation and testing.

Limitations:

• Requires careful planning and interface definition.

• Integration issues may arise over time.

• Not ideal for highly complex interdependent systems.

3.4 Spiral Model

Developed by Boehm (1988), the Spiral model integrates elements of design and prototyping in an

iterative, risk-driven process. Each loop of the spiral involves planning, risk analysis, engineering, and

evaluation.

Strengths:
• Explicit risk assessment and management.

• Flexible and iterative.

• Ideal for large, high-risk projects.

Limitations:

• Complex to manage and understand.

• Requires significant expertise and risk analysis skills.

• Expensive and time-consuming for small projects.

3.5 Agile Methodologies
Agile refers to a family of methodologies based on the principles outlined in the Agile Manifesto (Beck

et al., 2001). Agile promotes adaptive planning, continuous improvement, rapid delivery, and

stakeholder collaboration.

Common Agile frameworks include:

• Scrum:

Uses time-boxed iterations (sprints), with defined roles (e.g., Scrum Master, Product Owner) and

ceremonies (daily standups, sprint reviews).

• Kanban:

Visualizes workflow and limits work-in-progress to improve delivery flow and efficiency.

• Extreme Programming (XP):

Journal of Informetrics(ISSN 1875-5879) Volume 19 Issue 2

Page No: 263

Focuses on technical practices like pair programming, test-driven development, and continuous

integration.

Strengths:
• Highly adaptive to change.

• Strong stakeholder engagement.

• Emphasizes working software and team collaboration.

Limitations:

• Less effective in fixed-scope or highly regulated projects.

• Requires experienced teams and close customer involvement.

• Documentation may be de-emphasized.

3.6 DevOps

DevOps is a cultural and technical movement that integrates development and operations. It aims to

shorten development cycles, increase deployment frequency, and improve release quality through

automation and continuous integration/deployment (Bass, Weber, & Zhu, 2015).

Strengths:

• Accelerated delivery pipelines.

• Enhanced system reliability and feedback loops.

• Promotes collaboration across traditionally siloed teams.

Limitations:
• Requires significant cultural change.

• Toolchain complexity and automation overhead.

• May not align well with legacy systems and traditional workflows.

3.7 Hybrid Models
Modern projects often blend methodologies to accommodate diverse project requirements. These

hybrid models combine aspects of Waterfall, Agile, and DevOps to tailor workflows.

Examples include:

• Water-Scrum-Fall: Planning and release follow Waterfall, while development follows Scrum.

• Agile + DevOps: Agile for iterative development, DevOps for deployment and operations.

Strengths:

• Balances structure and flexibility.

• Customizable to organizational needs.

• Suitable for large-scale or enterprise-level systems.

Limitations:
• May introduce complexity in coordination.

• Risk of model mismatch if poorly integrated.

• Requires well-defined governance and communication structures.

4. Comparative Analysis of Software Development Models
Choosing the right software development model is critical to the success of a software project. Each

model embodies unique philosophies, workflows, and trade-offs. The suitability of a model depends on

the project’s complexity, regulatory constraints, timeline, team structure, and the degree of requirement

volatility. This section presents a comparative analysis of key models—Waterfall, V-Model,

Incremental, Spiral, Agile, DevOps, and Hybrid—using standardized criteria.

4.1 Comparison Criteria

To provide a structured comparison, the following criteria are used:

• Flexibility – The ability to accommodate changes in requirements.

• Documentation – Emphasis on detailed specifications and written records.

• Customer Involvement – Degree to which customers or end users participate throughout

development.

Journal of Informetrics(ISSN 1875-5879) Volume 19 Issue 2

Page No: 264

• Risk Management – Capacity for early identification and mitigation of project risks.

• Development Speed – Time taken to deliver working software.

• Project Complexity Suitability – How well the model handles large, complex systems.

• Team Collaboration Needs – Level of intra-team coordination and communication.

• Cost and Time Estimation Accuracy – Reliability of planning.

• Tool and Automation Dependency – Extent to which tools and automation play a role in

success.

Table 1 : Comparative Table

Model
Flexibi

lity

Document

ation

Custome

r

Involve

ment

Risk

Manage

ment

Speed

Comple

xity

Handlin

g

Collabora

tion

Estimat

ion

Accura

cy

Tool

Depende

nce

Waterfa

ll
Low High Low Low Slow

Moderat

e
Low High Low

V-

Model
Low Very High Low Medium Slow High Low High Low

Increme

ntal

Mediu

m
Medium Medium Medium

Mediu

m
High Medium Medium Medium

Spiral High High Medium
Very

High

Mediu

m

Very

High
Medium Low Medium

Agile

(Scrum)

Very

High

Low–

Medium

Very

High
Medium Fast Medium Very High Low Medium

DevOps High Medium High High
Very

Fast
High Very High Low

Very

High

Hybrid High High
Medium

–High
High

Mediu

m–

Fast

High High Medium High

4.3 Analysis by Key Criteria

Flexibility to Change

Agile encourages ongoing requirement refinement and prioritization, making it suitable for dynamic

environments (Beck et al., 2001). In contrast, Waterfall and V-Model follow a rigid sequence, making

changes expensive once a phase is complete (Royce, 1970).

Customer Involvement

Agile models prioritize continuous customer interaction. Product owners in Scrum or XP, for example,

directly influence the product backlog. Traditional models like Waterfall involve the customer mostly

at the beginning and end, reducing their ongoing influence.

Risk Management

The Spiral model stands out with its built-in risk analysis loops (Boehm, 1988). DevOps, by

emphasizing automation and monitoring, also proactively manages operational risks. Waterfall,

however, often defers risk visibility until later stages.

Journal of Informetrics(ISSN 1875-5879) Volume 19 Issue 2

Page No: 265

Delivery Speed

Agile and DevOps models enable rapid and frequent delivery through time-boxed iterations and

continuous integration/deployment pipelines (Bass et al., 2015). Waterfall and V-Model delay delivery

until all phases are complete, which can be months or years into the project.

Complexity Handling

Spiral and Hybrid models are well-suited to complex projects requiring layered development and

iterative validation. Agile can also scale with frameworks like SAFe or LeSS but may need more

governance.

Documentation and Compliance

Waterfall and V-Model provide extensive documentation—ideal for auditability and regulatory

compliance. Agile de-emphasizes documentation in favor of working software, which can be a

limitation in formal environments.

Cost and Time Estimation

Traditional models like Waterfall allow upfront estimation but are poor at adapting when scope changes.

Agile models support adaptive planning but often struggle with precise forecasting. Hybrid approaches

try to balance both.

Tool and Automation Dependency

DevOps has the highest dependence on tools—CI/CD pipelines, version control systems, infrastructure-

as-code, and monitoring solutions are central to its success. Agile benefits from tools like Jira and Git

but is more process-driven than tool-driven.

Table 2 : When to Use Which Model

Project Scenario Recommended Model(s)

Well-defined, stable requirements Waterfall, V-Model

High risk and complexity Spiral, Hybrid

Tight deadlines, evolving requirements Agile, DevOps

Large-scale, enterprise-wide deployment Hybrid (e.g., SAFe, Water-Scrum-Fall)

Regulated industry (e.g., healthcare, aviation) V-Model, Waterfall

Need for rapid delivery and continuous feedback Agile, DevOps

5. Modern Trends and Hybrid Models in Software Development

Software development is an ever-evolving field shaped by changes in technology, business needs, user

expectations, and development practices. Traditional models like Waterfall and V-Model provided

foundational structure, while iterative models like Agile and DevOps introduced flexibility, speed, and

continuous delivery. However, the increasing complexity of projects and the diversity of organizational

needs have led to the rise of hybrid models and modern trends that aim to combine the best of multiple

methodologies. This section explores these contemporary developments in detail.

5.1 The Rise of Hybrid Models

Hybrid models integrate principles from two or more development methodologies to create a tailored

framework suited to the unique constraints and goals of a specific project or organization. These models

are particularly useful in large organizations or projects that require both predictability and agility.

Journal of Informetrics(ISSN 1875-5879) Volume 19 Issue 2

Page No: 266

Examples of Popular Hybrid Models:

• Water-Scrum-Fall: A widely adopted hybrid that applies Waterfall for upfront planning and

release governance, Agile (Scrum) for iterative development, and traditional deployment cycles

for final release. This model is popular in enterprises that require documentation and

compliance but want to reap Agile's development benefits.

• Agile-Waterfall Hybrid: Combines the structured phases of Waterfall with Agile iterations

within each phase. Planning and design may follow Waterfall, while development and testing

are Agile.

• Agile + DevOps: This model combines Agile’s iterative development with DevOps practices

such as continuous integration, automated testing, and continuous deployment. Agile ensures

stakeholder collaboration and responsiveness, while DevOps enhances delivery efficiency and

reliability.

• SAFe (Scaled Agile Framework): A structured approach to scaling Agile across large

enterprises. It incorporates elements of Lean, Scrum, and traditional program management to

support alignment across multiple teams.

• Disciplined Agile Delivery (DAD): Developed by IBM, DAD extends Agile by incorporating

governance, architecture, and risk management to suit enterprise contexts.

Advantages of Hybrid Models:
• Tailored to specific organizational needs.

• Enable scalability and cross-team collaboration.

• Balance between flexibility and control.

• Support both innovation and regulatory compliance.

Challenges:
• Require careful integration of practices.

• Risk of process complexity or conflict between models.

• May need strong project management and governance structures.

5.2 Modern Trends in Software Development
With the advancement of cloud computing, artificial intelligence, and digital transformation initiatives,

several trends are shaping the future of software development.

5.2.1 Continuous Delivery and Deployment (CI/CD)

CI/CD pipelines have become a cornerstone of modern software development. Continuous Integration

ensures frequent code merges and automated testing, while Continuous Delivery/Deployment allows

software to be delivered quickly and reliably to production environments.

Benefits:
• Faster release cycles.

• Reduced manual errors.

• Enhanced user feedback loops.

5.2.2 Cloud-Native Development
Cloud-native development embraces technologies like microservices, containers (e.g., Docker),

orchestration (e.g., Kubernetes), and serverless computing. These approaches allow for high scalability,

portability, and resilience.

Impact:
• Teams can focus on functionality rather than infrastructure.

• Promotes modular, loosely coupled architectures.

• Facilitates global availability and rapid scaling.

5.2.3 AI-Driven Development and Automation

Journal of Informetrics(ISSN 1875-5879) Volume 19 Issue 2

Page No: 267

Artificial Intelligence (AI) is increasingly used in software development—from code generation and

bug detection to predictive analytics and intelligent testing tools (e.g., GitHub Copilot, DeepCode).

Examples of AI Integration:
• Intelligent IDEs suggesting code completions.

• Automated test case generation.

• Predictive project risk assessments.

5.2.4 Low-Code and No-Code Platforms
Low-code/no-code platforms allow non-developers to build applications using graphical user interfaces

and minimal hand-coding (e.g., Microsoft Power Apps, OutSystems). These platforms are particularly

useful for internal tools and rapid prototyping.

Implications:

• Accelerates development.

• Broadens participation in the software creation process.

• Raises new concerns around governance, security, and scalability.

5.2.5 Agile at Scale
Agile practices are being scaled across organizations using frameworks like:

• SAFe (Scaled Agile Framework)

• LeSS (Large-Scale Scrum)

• Spotify Model

These frameworks help maintain Agile principles while coordinating across dozens or hundreds of

teams.

5.2.6 DevSecOps

Security is increasingly being integrated into the DevOps pipeline, leading to the emergence of

DevSecOps. This approach embeds security testing and controls within development and deployment

workflows, ensuring vulnerabilities are addressed early.

5.2.7 Remote and Distributed Agile

The COVID-19 pandemic accelerated the adoption of remote work, pushing teams to adapt Agile

methodologies to virtual environments using tools like Jira, Slack, Zoom, and Miro. Distributed Agile

models continue to evolve to support asynchronous communication, digital whiteboarding, and remote

ceremonies.

5.2.8 Value Stream Management (VSM)

VSM is a lean business practice that provides end-to-end visibility and control across the software

delivery lifecycle. It focuses on optimizing flow from idea to delivery, improving efficiency, and

aligning development with business outcomes.

5.3 Future Directions

As digital transformation accelerates, software development models will likely continue to evolve along

the following lines:

• Hyperautomation: Integration of AI, RPA (Robotic Process Automation), and orchestration

to automate software lifecycle tasks.

• Composable Applications: Modular systems built from reusable, interoperable components,

enabling faster innovation.

• Ethical and Sustainable Software Development: Increasing focus on responsible AI, green

computing, and inclusive design practices.

6. Case Studies and Industry Examples

Journal of Informetrics(ISSN 1875-5879) Volume 19 Issue 2

Page No: 268

The practical application of software development models varies significantly across industries and

organizations, influenced by factors such as project scope, regulatory requirements, team size, and

market demands. This section provides real-world case studies and industry examples that illustrate

how different models have been implemented to achieve project success or overcome challenges.

6.1 Case Study 1: NASA – Waterfall Model

Context:
NASA has historically used the Waterfall model for critical systems, especially in spacecraft and

aerospace projects.

Application:

In the development of the Space Shuttle flight software, NASA followed a rigorous Waterfall approach,

due to the need for high assurance, safety, and predictability. Each phase—requirements, design,

implementation, verification, and maintenance—was meticulously documented and reviewed.

Benefits:
• Clear structure and strict validation ensured system reliability.

• Traceability of requirements and compliance with safety standards.

Challenges:

• High costs and long development cycles.

• Late discovery of requirement changes was expensive to address.

Reference:

Lutz, R. R. (1993). Analyzing software requirements errors in safety-critical, embedded systems. RE’93

Proceedings.

6.2 Case Study 2: Microsoft – Spiral Model

Context:
Microsoft has used the Spiral model for large-scale product development, such as early versions of

Microsoft Windows.

Application:

The model’s iterative cycles enabled Microsoft to gradually refine features, gather user feedback, and

mitigate risks through progressive prototyping. Each spiral loop included planning, risk analysis,

engineering, and evaluation.

Benefits:
• Flexibility in accommodating evolving requirements.

• Early risk detection reduced long-term failures.

Challenges:
• Managing complexity across multiple spirals.

• Increased time and cost compared to linear models.

Reference:
Boehm, B. W. (1988). A spiral model of software development and enhancement. ACM SIGSOFT.

6.3 Case Study 3: Spotify – Agile (Spotify Model)

Context:
Spotify has become a reference point for Agile at scale, with its own adaptation known as the Spotify

Model.

Application:
Spotify structures teams into Squads, Tribes, Chapters, and Guilds to maintain autonomy while

enabling cross-team collaboration. Squads function like Scrum teams, focusing on one feature set. Agile

principles such as continuous deployment, retrospectives, and user-centric design are core to their

process.

Benefits:
• Encourages innovation and team autonomy.

• Scales Agile without strict frameworks.

Journal of Informetrics(ISSN 1875-5879) Volume 19 Issue 2

Page No: 269

Challenges:
• Hard to replicate in companies with hierarchical cultures.

• Informal structures can lead to coordination issues at scale.

Reference:

Kniberg, H., & Ivarsson, A. (2012). Scaling Agile @ Spotify. Spotify Labs Blog.

6.4 Case Study 4: Amazon – DevOps

Context:

Amazon exemplifies DevOps success through its focus on continuous delivery, automation, and

infrastructure as code.

Application:
With thousands of microservices deployed across AWS, Amazon engineers push code updates every

11.7 seconds on average. DevOps practices such as CI/CD pipelines, monitoring, and rollback

mechanisms support this velocity.

Benefits:
• High release frequency and system uptime.

• Faster customer feedback integration.

Challenges:
• Requires heavy investment in automation infrastructure.

• Complex monitoring and security management.

Reference:
Kim, G., Humble, J., & Willis, J. (2016). The DevOps Handbook. IT Revolution Press.

6.5 Case Study 5: IBM – Hybrid Model (Disciplined Agile Delivery - DAD)

Context:
IBM adopted the Disciplined Agile Delivery (DAD) framework to combine Agile flexibility with

enterprise-scale governance and risk management.

Application:

DAD integrates elements from Scrum, Kanban, and Lean with enterprise needs like architecture

decisions, compliance, and DevOps. Used in financial, healthcare, and government projects.

Benefits:

• Customizable lifecycle phases.

• Balances agility with structure.

Challenges:
• Steeper learning curve.

• Requires strong leadership and governance.

Reference:
Ambler, S., & Lines, M. (2012). Disciplined Agile Delivery: A Practitioner's Guide to Agile Software

Delivery in the Enterprise.

6.6 Case Study 6: Government of India – Agile in Digital India Initiatives

Context:
The Government of India has implemented Agile practices in e-governance platforms such as

DigiLocker and MyGov.

Application:
Agile enabled rapid iteration based on citizen feedback, open-source collaboration, and incremental

feature delivery.

Benefits:
• Faster deployment of citizen services.

• Better alignment with user expectations.

Challenges:
• Agile adoption in bureaucratic systems required cultural change.

Journal of Informetrics(ISSN 1875-5879) Volume 19 Issue 2

Page No: 270

• Difficulty in managing multiple vendors and stakeholders.

Reference:
MeitY. (2020). Agile Methodology in e-Governance Projects. Ministry of Electronics & Information

Technology, India.

7. Challenges and Limitations of Software Development Models

While software development models provide structured frameworks and best practices for managing

the software lifecycle, they are not without challenges and limitations. The effectiveness of a model

depends on various factors, such as project type, team composition, stakeholder expectations,

organizational culture, and external constraints like budget or regulations. This section outlines the key

limitations encountered across different models, highlighting common difficulties and model-specific

concerns.

7.1 General Challenges Across All Models

7.1.1 Misalignment with Project Requirements

One of the most frequent challenges is the mismatch between the chosen model and the actual needs of

the project. For example, applying Waterfall to a highly dynamic and uncertain project often leads to

rework and inefficiency. Similarly, using Agile in highly regulated environments may fail to meet

compliance requirements unless carefully adapted.

7.1.2 Resistance to Change

Introducing a new development model often requires significant shifts in organizational processes,

mindset, and communication. Resistance from management or team members—especially in traditional

or hierarchical organizations—can hinder successful adoption, particularly for Agile and DevOps

practices.

7.1.3 Overhead and Complexity

Some models, especially hybrid or scaled approaches like SAFe or DAD, introduce process overhead

through documentation, ceremonies, and governance layers. While these structures add value, they can

also reduce agility and slow decision-making if not managed well.

7.1.4 Communication and Collaboration

Poor collaboration between developers, testers, operations, and stakeholders can disrupt any model.

This is especially true in distributed or cross-functional teams where coordination becomes a logistical

and cultural challenge.

7.2 Model-Specific Challenges

7.2.1 Waterfall Model
• Rigid structure: Not ideal for projects where requirements are likely to change.

• Late feedback: Stakeholders often don’t see working software until the end.

• Poor adaptability: Adjusting mid-project is costly and time-consuming.

7.2.2 V-Model
• Limited flexibility: Like Waterfall, it assumes a linear path and is not suited for iterative

feedback.

• Heavy documentation: Extensive testing documentation increases workload.

• Delayed testing effectiveness: Testing starts only after design and coding are complete.

7.2.3 Spiral Model

• Complex management: Requires expertise in risk assessment and iteration planning.

• High cost: Frequent prototyping and multiple iterations can be resource-intensive.

• Ambiguity: Spiral phases can be vaguely defined without strong governance.

7.2.4 Agile (Scrum, XP, Kanban)
• Scope creep: Constant change can result in uncontrolled growth of features.

• Scalability issues: Agile works well for small teams but is harder to coordinate across multiple

teams.

• Requires mature teams: Success depends on discipline, experience, and collaboration.

Journal of Informetrics(ISSN 1875-5879) Volume 19 Issue 2

Page No: 271

• Incomplete documentation: Agile's emphasis on working software over documentation may

cause problems in maintenance and knowledge transfer.

7.2.5 DevOps
• Cultural shift: DevOps demands close collaboration between traditionally siloed teams, which

is hard to implement.

• Toolchain complexity: Integrating various automation tools can become technically and

logistically challenging.

• Security concerns: Faster release cycles can compromise security if DevSecOps practices are

not embedded.

7.2.6 Hybrid Models
• Process confusion: Teams may struggle with mixed practices and unclear priorities.

• Increased training needs: Learning and applying multiple frameworks requires effort and

time.

• Governance overhead: May reintroduce bureaucratic layers that Agile and DevOps were

meant to eliminate.

7.3 Limitations Due to External Constraints

7.3.1 Regulatory and Compliance Issues

Industries like healthcare, finance, and aerospace must follow strict compliance protocols (e.g., HIPAA,

GDPR, ISO). Agile or DevOps may need heavy adaptation to meet these standards, which limits their

benefits.

7.3.2 Resource and Budget Constraints

Some models require dedicated roles (e.g., Scrum Masters, DevOps engineers) or automation tools that

may not be affordable for smaller organizations or projects with tight budgets.

7.3.3 Tool Dependency and Vendor Lock-In

Modern development models often rely heavily on tools for automation, testing, collaboration, and

deployment. Over-reliance on specific platforms or vendors can cause portability and cost issues.

7.4 Human and Organizational Factors

• Lack of training: Poor understanding of the model among team members leads to suboptimal

implementation.

• Team dynamics: Personal conflicts, skill gaps, or poor leadership can undermine even the best-

suited development models.

• Stakeholder disengagement: In models requiring frequent feedback (like Agile), lack of

stakeholder participation can derail progress.

8. Conclusion

Software development has undergone significant transformation over the past few decades. As

organizations face increasing pressure for faster delivery, better user experiences, and greater flexibility,

software development models have evolved to meet these demands. From the structured and predictable

nature of the Waterfall model to the flexible, iterative frameworks of Agile and DevOps, each model

has its place in the software lifecycle. The key to success in software development lies not in selecting

a singular, "best" model but in understanding the strengths and limitations of each approach and

tailoring them to the unique needs of the project and organization.

The Waterfall and V-Model provide structured frameworks suitable for projects with clear, well-defined

requirements, often in regulated environments. However, these models are less effective in

environments where change is frequent or unpredictable. On the other hand, Agile models, such as

Scrum and Kanban, offer flexibility, faster iterations, and a focus on customer feedback, making them

ideal for dynamic and rapidly evolving projects. DevOps, which emphasizes continuous delivery,

collaboration, and automation, has revolutionized software development in environments where speed

and efficiency are paramount.

Journal of Informetrics(ISSN 1875-5879) Volume 19 Issue 2

Page No: 272

Hybrid models, such as the Water-Scrum-Fall and Agile-Waterfall combinations, have emerged to

bridge the gap between traditional and modern practices, allowing organizations to leverage the benefits

of both worlds. Scaled Agile Framework (SAFe) and Disciplined Agile Delivery (DAD) have provided

ways to scale Agile practices across large, complex enterprises, while ensuring governance and

alignment with business objectives.

Despite the clear benefits of these modern approaches, each model presents its own set of challenges,

including resistance to change, scalability issues, and complexities in managing hybrid models. Factors

like regulatory requirements, resource constraints, and organizational culture can further complicate the

adoption and success of a given model. As organizations continue to adopt more flexible and

collaborative development approaches, understanding these challenges is essential to avoiding failure

and optimizing software development efforts.

References

1. Awad, M. A. (2005). A comparison between agile and traditional software development

methodologies. University of Western Australia.

2. Bass, L., Weber, I., & Zhu, L. (2015). DevOps: A software architect's perspective. Addison-

Wesley.

3. Beck, K., Beedle, M., van Bennekum, A., et al. (2001). Manifesto for Agile Software Development.

https://agilemanifesto.org/

4. Boehm, B. W. (1988). A spiral model of software development and enhancement. ACM SIGSOFT

Software Engineering Notes, 11(4), 14–24.

5. Highsmith, J. (2002). Agile software development ecosystems. Addison-Wesley.

6. Chow, T., & Cao, D. B. (2008). A survey study of critical success factors in agile software projects.

Journal of Systems and Software, 81(6), 961–971.

7. Denning, S. (2016). Water-Scrum-Fall Is The Reality Of Agile For Most Organizations Today.

Forbes. https://www.forbes.com/

8. Forsgren, N., Humble, J., & Kim, G. (2018). Accelerate: The science of lean software and DevOps.

IT Revolution.

9. Jalote, P. (2005). An integrated approach to software engineering (3rd ed.). Springer.

10. Kruchten, P. (2013). Agility at Scale. IBM DeveloperWorks.

11. Leffingwell, D. (2011). Agile software requirements: Lean requirements practices for teams,

programs, and the enterprise. Addison-Wesley.

12. Leite, L., Rocha, C., Kon, F., Milojicic, D., & Meirelles, P. (2020). A survey of DevOps concepts

and challenges. ACM Computing Surveys, 52(6), 1–35.

13. Pressman, R. S., & Maxim, B. R. (2020). Software engineering: A practitioner’s approach (9th

ed.). McGraw-Hill Education.

14. Royce, W. W. (1970). Managing the development of large software systems. Proceedings of IEEE

WESCON, 1–9.

15. Santos, R., da Silva, F. Q., Soares, S., & França, A. C. (2018). The quest for the best software

development methodology: A systematic literature review. Journal of Systems and Software, 137,

96–111.

16. Schwaber, K., & Beedle, M. (2002). Agile software development with Scrum. Prentice Hall.

17. Sommerville, I. (2016). Software engineering (10th ed.). Pearson Education.

18. Standish Group. (2015). CHAOS Report. Retrieved from https://www.standishgroup.com/

Journal of Informetrics(ISSN 1875-5879) Volume 19 Issue 2

Page No: 273

19. Puri, R., & Kaur, R. (2021). A hybrid model selection framework for software development

methodologies. International Journal of Advanced Computer Science and Applications, 12(3), 67–

75.

20. The development of large software systems. Proceedings of IEEE WESCON, 1–9.

21. Forsgren, N., Humble, J., & Kim, G. (2018). Accelerate: The Science of Lean Software and DevOps.

IT Revolution.

Journal of Informetrics(ISSN 1875-5879) Volume 19 Issue 2

Page No: 274

