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Abstract 

MIG welding is widely used in industries and optimization and selection of correct set of 

welding parameters is very much essential for quality welds to be produced. In the current 

experiments firstly machine learning algorithm random forest regression has been applied for 

prediction and optimization of welding parameters. For comparison and better performance 

Pareto front analysis was performed on top of it. The performance and results has been 

explained through visualization for better understanding and gaining insight. It was found 

that random forest regression performed quite well despite limited number of dataset. 
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1. Introduction 

For optimizing welding parameters various techniques have been applied by various searchers 

throughout the world. For this purpose techniques like multiple linear regressions (MLR) have 

been used extensively. Jayant et al [1] applied analytic hierarchy process for selection of best 

welding process for welding of high pressure vessels. Twelve competing parameters were chosen 

for the multi criteria decision making process. Jeet et al [2] applied TOPSIS for optimizing the 

multi response process of GAMW while welding disparate metals SS202 and AISI 1018. They 

also developed a predictive model by genetic algorithm and applied simulated annealing for 

optimization. Bhattacharya et al [3] applied AHP for optimizing process parameters of MIG 

welding for welding high carbon steel. Zhu et al [4] first applied Douglas-Puke algorithm to 

extract features points for weld quality. For online monitoring of weld quality they relied on 

random forest regression (RFR) ensemble learning and also compared the result with ID3 

algorithm of decision tree. They found that accuracy of RFR was quite higher than ID3 or CART 

algorithm. Munghate et al [5] predicted bead geometry using machine learning algorithm while 

TIG welding austenitic steel. They applied classification models RFR to predict the bead 

geometry fittingly. Proper correlation was also established between flux deposition, process 

parameters and bead geometry. Based on random forest approach Babaiyan et al [6] developed a 

hybrid mishmash of SVM (support vector machine) and RVM (relevance vector machine) for 

predicting precise weld bead geometry of GMAW process. Their proposed model was highly 
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accurate and more than that could be obtained by SVM or RVM alone. Rajesh et al [7] optimized 

for ultimate tensile strength of dissimilar metal welding of duplex 2304 stainless steel and 

Inconnel 718 by laser beam welding (LBW). The variables parameters were focal position, 

welding speed and laser power. The optimum value of of UTS was determined by running as 

random forest model. Upon validation test they confirmed an error of 0.814 % compared with 

the predicted result of the model. Nampoothiri et al [8] employed various machine learning 

techniques including ANN, RFR, MLR and ANFIS (adaptive neuro-fuzzy inference system) to 

predict micro-hardness and hot crack length while welding Inconnel 625 by ultrasonically 

assisted TIG process. The variables of welding were current, ultrasonic vibration, gas flow rate 

and filler metal. Amongst the model RFR performed the best with highest accuracy regarding 

together training and testing data on both crack length and microhardness. Zhang et al [9] 

performed real time detection of weld defects by taking arc spectrum while robotic arc welding 

of aluminium alloy. They first extracted 50 features of the arc spectrum and after pre-processing 

performed quantitative index of feature importance through mean decrease Gini and mean 

decrease accuracy to obtain six spectral features of importance. Based on random forest they 

established a defect identification model and important features of the arcs were found out. Han 

et al [10] employed a visual sensing technology for online monitoring of defects in MIG 

welding. With the help of SDM method they extracted the edge features of images of molten 

pool. For identifying and classifying penetration status they applied random forest on the features 

like molten pool area, half-length, width and back width. The accuracy of the model on 

classification was 89.8 % which is quite acceptable. Chandra et al [11] took data from a thermal 

camera while welding 304L steel by TIG welding process. The TIG welding process was 

equipped with activated flux and it was called activated TIG or A-TIG. The applied five machine 

learning algorithms of supervised learning category for predicting surface temperature of the 

welding and to arise with a predictive model. Variable of consideration was amount of activated 

flux. Decision tree and ensemble learning methods were implemented effectively. Among these 

random forests yielded least error. Kumar et al [12] experimented on MIG welding with varying 

welding current, voltage and gas flow rate. Their target features were tensile strength and 

hardness. To evaluate the test factor impacts they implemented regression models, neural 

networks, ridge, and lasso methods. Gradient boosting and random forest regression proved to be 

efficiently predicting with higher R2 values and lower errors. Mezher et al [13] performed 

dissimilar metal welding of austenitic stainless steel and grade-2 titanium alloy by resistance spot 

welding. They observed for shear force, micro-hardness, and failure mode for 100 test samples 

varying with process parameters like welding current, time, pressure, squeeze time, pulse 

welding and holding time. For accurately analyse the experimental data they used models of 

GBR, CatBoost, and RFR along with ANN. ANN model was proved to be the best with Polak-

Ribiere training function. The second best was RFR. Zhang et al [14] investigated the seam 

strength of laser welded of aluminium lithium alloy by extreme gradient boosting (XGBoost) 

decision tree and optical spectrum. Superior complementarity was demonstrated between RF 

(random forest) and PCA (principal component analysis). They proposed a novel regression 

model, namely RFPCA-XGBoost. It was found that the proposed model performed the best with 
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R2 value of 0.9383. Rameshkumar et al [15] experimented on SMAW process with voltage, 

current, and sound sensors. The sensors data was classified with good and bad welding. They 

carried out signal processing and statistical features in time domain were extracted. For statistical 

modelling they employed ML algorithms like classification and regression tree (CART) and 

SVM. With quadratic kernel function SVM was trained and the model generated an accuracy of 

99%. Yang et al [16] investigated for making an expert system for robotic GMAW automation 

where taking the user input the system by its own will decide the welding parameters for 

optimum welding. They combined the XGBoost algorithm and database technology for this 

purpose.  

Grujicic et al[17] had developed a multi-physics based model where they used six modules of 

diffenrent physical characteristics of the process. They upgraded the system by incorporating 

functional relationship between the model outputs and welding parameters. Zhao et al [18] 

proposed a grey wolf algorithm which is adaptive in nature to optimize a four factor, five level 

experimental data of GMAW. The algorithm performed well and to attain required quality of 

geometry they used TOPSIS algorithm and analysed the data. Finally from Pareto front they 

arrived at their optimum condition.  Thakar et al [19] experimented on weldig of S690Ql steel by 

GMAW process. They utilized metal-cored filler wire. Their input features were voltage, current, 

and gas flow rate. Target features selected were penetration depth, width, reinforcement, and 

HAZ width. They designed the experiment by Box-Behnken of response surface methodology. 

They applied mathematical regression models and heat transfer search algorithm. For estimation 

of critical bead geometry HAS algorithm was proven to be very precise and that was validated by 

experimental data. Data envelopment analysis is a popular linear programming method for 

optimization. Rocha et al [20] combined DEA with RSM for better performance. Five quality 

characteristic of GMAW was considered and they optimized those correlated responses to arrive 

at a singular objective function. They also employed Taguchi multi response design in 

conjunction with principal component analysis. Both the methods were vey close in terms of the 

solution. However they concluded that DEA performed better. 

2. Research Methodology 

(I) Experimental data were obtained and cleaned first.  

(II) Pre-processing of the cleaned data was performed. This included converting the 

categorical data into quantifiable form to be used by the algorithms. 

(III) Correlation matrix of the experimental data was obtained for gaining some idea of 

importance of features. 

(IV) Random forest regression (RFR) was applied first and optimization was performed. 

(V) One search algorithm was carried out for finding a new set of optimal data and 

validation test was performed. 
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(VI) Pareto front analysis was carried out as the problem poses a multi criteria decision 

problem and optimality points were found. 

3. Experimental work 

The MIG welding experiments were performed using ESAB INDIA LIMITED make AUTOK 

400 model. It has 0-400 ampere range and 0-75 voltage range. The wire feed motor is made by 

Matsushita Industrial Equipment Co. Limited with model number PM 12 MA 14 K. The 

parameters that were varied are welding current, voltage and speed. Work piece material was 

selected as medium carbon steel. The tests that were performed are dye penetration test, visual 

test and bend-rebend test. Dye penetration test were performed for penetration and blow holes. 

Spatter and deposition were tested visually and categorically described. Blow holes also were 

categorically described. Quantitative values were taken for bending load of the weld through 

bend-rebend test in universal testing machine. 

The experimental data after cleaning is shown in table-1. 

Table-1: Experimental data 

Sl. 

No. 

Spee

d 

(mm

/min

) 

Volta

ge 

(V) 

Curr

ent 

(A) 

Spatt

er 

Penetrat

ion 

Blow 

Hole 

Depositio

n 

Crack 

Descript

ion 

Stren

gth(k

N) 

E1 
370.

5 
25 140 Large Less Large Bad weld  

Transver

se, HAZ, 

longitudi

nal, 

under-

bead 

8.8 

E2 
370.

5 
25 150 Less Good Large 

Thin 

weldment 

deposition 

Toe 

crack 
15.8 

E3 
370.

5 
25 160 Less Good Less 

Thin 

deposition 

Transver

se, 

longitudi

nal 

9.2 

E4 
370.

5 
30 140 No 

Very 

good 

Very 

less 

Continuo

us 

deposition 

Longitud

inal 
7.8 

E5 
370.

5 
30 150 No 

Very 

good 

Very 

less 

Continuo

us 

HAZ 

crack 
9 
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deposition 

E6 
370.

5 
30 160 No 

Desirabl

e 
No 

Thick and 

continuou

s 

Transver

se 
10.2 

E7 
475.

75 
25 140 Some Less Less 

Discontin

uous 

deposition 

Toe 

crack 
7 

E8 
475.

75 
25 150 Little Less Less 

Not 

smooth 

deposition 

Transver

se, 

longitudi

nal, 

under-

bead 

7.8 

E9 
475.

75 
25 160 No Good No 

Thin 

deposition

, better 

Transver

se, 

longitudi

nal, Root 

6.5 

E10 
475.

75 
30 140 No Good No 

Desirable 

weld,  
No crack 13 

E11 
475.

75 
30 150 No Good No 

Desirable 

weld, 

more 

undercut 

No crack 13.4 

E12 
475.

75 
30 160 No 

Very 

good 
No 

Desirable 

weld, 
No crack 16 

 

It can be seen that excepting the bending load all the output features are categorical in nature. 

In a systematic procedure those categorical output variables were converted into quantitative 

terms by defining some functions in python. The functions were defined by the user. 

The preprocessed data is shown in table-2. 

Table-2: Preprocessed Experimental Data 
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Experiment 

No 

Weld 

Speed 

Weld 

Voltage 

Weld 

Current 
Spatter Penetration 

Blow 

Hole 

Metal 

Deposition 
Crack 

Bending 

Load 

E1 370.5 25 140 3 1 3 0 3 8.8 

E2 370.5 25 150 1 2 3 2 1 15.8 

E3 370.5 25 160 1 2 1 1 1 9.2 

E4 370.5 30 140 0 3 1 2 1 7.8 

E5 370.5 30 150 0 3 1 2 1 9 

E6 370.5 30 160 0 2 0 3 1 10.2 

E7 475.75 25 140 2 1 1 0 1 7 

E8 475.75 25 150 1 1 1 0 3 7.8 

E9 475.75 25 160 0 2 0 2 3 6.5 

E10 475.75 30 140 0 2 0 0 0 13 

E11 475.75 30 150 0 2 0 0 0 13.4 

E12 475.75 30 160 0 3 0 0 0 16 

 

The statistical description of the data is shown in table-3. 

Table-3: Statistical description of the data 

ex 
Weld 

Speed 

Weld 

Voltage 

Weld 

Current 
Spatter 

Penetrat

ion 

Blow 

Hole 

Metal 

Depositi

on 

Crack 
Bending 

Load 

cou

nt 
12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 

μ 423.125 27.5 150.0 0.667 2.0 0.917 1.0 1.25 10.375 

σ 54.965 2.612 8.528 0.9847 0.7385 1.084 1.1282 1.1381 3.338 

min 370.5 25.0 140.0 0.0 1.0 0.0 0.0 0.0 6.5 

25

% 
370.5 25.0 140.0 0.0 1.75 0.0 0.0 0.75 7.8 

50

% 
423.125 27.5 150.0 0.0 2.0 1.0 0.5 1.0 9.1 

75

% 
475.75 30.0 160.0 1.0 2.25 1.0 2.0 1.5 13.1 

max 475.75 30.0 160.0 3.0 3.0 3.0 3.0 3.0 16.0 

 

4. Results and discussion 
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For gaining insight about the data pair plot of all the variables are constructed and shown in 

figure-1. From this pair plots frequency distribution of all the input and output variables are 

visualized. 

 

Figure-1: Pair plots of numerical data 

Now for better understanding of the statistical significance of the variables, the distribution of 

variables is shown in figure-2 to figure-7. 
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Figure-2: Distribution of bending load  Figure-3: Distribution of penetration 

 

Figure-4: Distribution of Deposition    Figure-5: Distribution of Blow Hole 

 

Figure-6: Distribution of Crack    Figure-7: Distribution of Spatter 
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For further analysis and getting direction correlation among the variables are required to be 

derived. The correlation matrix is presented in figure-8. 

 

Figure-8: Correlation matrix  

From this correlation matrix it can be concluded that Penetration and welding voltage, whereas 

welding speed contributes less. There is high correlation between welding voltage and spatter 

and blow hole. As a consequence spatter and blow hole are also correlated, that is if spatter is 

seen on the surface of the weld metals, it can be concluded that there is higher probability of 

blow hole occurring inside the weldment. There is also moderate correlation between welding 

current and spatter and blow hole. There is substantial correlation between welding voltage and 

crack. Metal deposition is to some extent is correlated to welding current. 
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The most important factor of the welding is the welding strength which was determined by the 

bending load. To draw the significance of different input features on the weld strength the 

visualization is shown in figures -9 to 11. 

 

   Figure-9: Bending load vs weld speed                             Figure-10: Bending load vs weld 

voltage 

 

 

 

 

 

 

 

Figure- 11: Bending load vs welding current 

From these plots the spread of bending load can be visualized for different parametric settings. 

Now for optimization the output variables were categorized as positive attributes and negative 

attributes depending on whether we want to maximize or minimize. Bending load, penetration 

and deposition were taken as positive attributes, and blow hole, crack and spatter were 

considered as negative attributes. The processed experimental data was modified accordingly by 

incorporating negativities in the columns of negative attributes. Then outputs were scaled for a 

meaningful composite score. Here a composite score is being defined as sum of scaled 

maximized outputs - sum of scaled minimized outputs. Bending Load and Penetration are 

generally maximized, but there might be tradeoffs. Metal Deposition being 'Desirable' is also 
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positive. For simplicity, all 3 were considered as to be maximized (after appropriate 

scaling/mapping) and spatter, blow hole, crack as to be minimized. The random forest regressor 

was trained and then a grid search algorithm was run. The model generated a mean squared error 

(MSE) as: 2.803 which is quite low. The grid search was run with the aim of highest composite 

score and the result is tabulated in table-4. 

Table-4: parametric setting and output with composite score. 

in

de

x 

Weld 

Speed 

Weld 

Voltage 

Weld 

Curren

t 

Spa

tter 

Penet

ration 

Blow 

Hole 

Metal 

Depositio

n 

Cr

ack 

Bendin

g Load 

Composite 

Score 

11 475.75 30 160 0 3 0 0 0 16.0 
4.98620802

2167752 

5 370.5 30 160 0 2 0 3 1 10.2 
3.61694568

78143125 

4 370.5 30 150 0 3 1 2 1 9.0 
2.76599054

8321702 

10 475.75 30 150 0 2 0 0 0 13.4 
2.75844274

373932 

9 475.75 30 140 0 2 0 0 0 13.0 
2.63328094

12692684 

 

Schematically the distribution composite score on original data is shown in fiure-12. 
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   Figure-12: Distribution of composite score for original data. 

Experiment number 11 proved to be best and it is also validated from the experimental point of 

view intuitively. However, that may vary with user choice of desirability of outputs. To 

overcome this there was a generation of new data set by the machine learning algorithm of RFR 

and an iterative search was performed. After 1000 iterations the model came up with the 

following optimized result. 

Best composite score found: 0.07954667810877378 

Optimal parameters suggested by search: 

Weld Speed      406.610170 

Weld Voltage     29.386625 

Weld Current    143.921477 

Predicted outputs for the suggested optimal parameters: 

Spatter         Blow Hole       Crack         Bending Load        Penetration          Metal Deposition 

0.600741        0.874074     1.382963           9.677111            2.054074               1.251111 

The above set of parameters and output variables were generated by the algorithm and this is to 

be validated through experimentation.  

Additionally Pareto front analysis was performed as the problem is of the kind of multi objective 

decision making. With the absence of experimental validation this is performed and compared 

for performance of the algorithm on the data. 

Table -5 indicates the result obtained by Pareto front. 

 

Table-5: Pareto Front Data (Optimal trade-offs observed in the data): 

index 
Weld 

Speed 

Weld 

Voltage 

Weld 

Current 
Spatter Penetration 

Blow 

Hole 

Metal 

Deposition 
Crack 

Bending 

Load 

1 370.5 25 150 1 2 3 2 1 15.8 

4 370.5 30 150 0 3 1 2 1 9.0 

5 370.5 30 160 0 2 0 3 1 10.2 

11 475.75 30 160 0 3 0 0 0 16.0 

 

It is evident that the result obtained from Pareto front is well correlated to that of RFR. 

It was observed in the correlation matrix that with bending load crack and spatter was correlated 

and was conflicting attribute. Pareto front of bending load with spatter and crack is shown in 

figure 13 and 14. 
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Figure-13: Pareto front-bending load vs spatter          Figure-14: Pareto front-bending load vs 

crack 

 

Figure-15: Parallel coordinates plot of Pareto Front points 
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Figure-16: Parallel coordinates plot of Pareto front points (all maximize) 

The plot corresponding to figure16 significantly expresses the performance of various Pareto 

fronts conforming to the solutions 1,4,5 and 11 across all the scaled objectives. All the objectives 

were scaled and normalized in such a manner that higher value indicates better. The best solution 

is indicated by the yellow line, that is, solution11. And this is exactly the solution provided by 

the random forest regression. So we can conclude that our machine learning model performed 

well and is matching with Pareto front analysis. So we may consider the optimized solution 

provided by RFR. 

 

5. Conclusion 

The random forest regression model which is a kind of ensemble machine learning model 

performed well in case of MIG welding experimental data. Here the number of data points was 

very low. Nonetheless the algorithm worked well and can be implemented in industrial scenario, 

where having multitudes of data the ensemble machine learning regression model is expected to 

perform very well. In the present case the best solution among the experimental data experiment 

no 11 proved to be best and that was supported by Pareto front analysis. If we look closely the 

output variables associated with this experiment, we find that it performed the best in blow hole 

and crack resistance. It had also high performance with respect to bending load and spatter. 

However with regard to metal deposition it did not perform well, which indicates a tradeoff. To 
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overcome this it was desired to search for optimal solution, which may consists of parametric 

combination out of the experimentally considered ones. And the grid search of RFR finally 

arrived at an optimal solution considering all the output variables to be satisfied optimally. 

Bearing in mind the success of the algorithm the optimal solution may be considered. However 

there is scope for experimental validation. 
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