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ABSTRACT 

This study presents a virtual mouse system based on hand gesture recognition, 

offering a touchless alternative to conventional input devices. The system employs 

real-time image processing techniques using OpenCV and MediaPipe to detect and 

interpret hand gestures captured via a webcam. The core mechanism involves 

tracking 21 key landmarks on the human hand to identify specific gestures, which 

are then translated into corresponding mouse functions such as movement, click, 

drag, and scroll. The graphical user interface (GUI) is implemented using Python 

libraries, ensuring a user-friendly interaction. This virtual mouse has the potential to 

support hands-free computer interaction, providing enhanced accessibility for users 

with motor disabilities and reducing physical contact with hardware, which is 

particularly relevant in post-pandemic digital environments. The system was tested 

for accuracy and responsiveness, with positive results in stable lighting conditions. 

The overall design demonstrates the feasibility and practicality of using computer 

vision for gesture-based input, contributing to the development of intuitive human-

computer interaction systems. 

Keywords: Human-Computer Interaction, Gesture Recognition, Virtual 

Mouse, Computer Vision, Image Processing, Accessibility 

INTRODUCTION 

In today’s technology-driven world, Human-Computer Interaction (HCI) has 

emerged as a crucial area of research, aiming to establish seamless, intuitive, and 

touch-free communication between humans and machines. Conventional input 

devices like the mouse and keyboard, though reliable, are gradually becoming less 

Journal of Informetrics(ISSN 1875-5879)  Volume 19 Issue 3

PAGE NO: 105



 
 

suitable for modern environments where flexibility, hygiene, and accessibility are 

prioritized. As a result, gesture-based control systems are gaining attention for their 

ability to enable real-time, contactless interaction across various domains such as 

automation, education, healthcare, and gaming. 

Among various gesture-based technologies, hand gesture recognition stands out 

due to its natural and expressive communication capabilities. Advances in computer 

vision and machine learning, particularly through libraries such as OpenCV and 

MediaPipe, have made it possible to track and analyse hand movements accurately. 

These technologies allow for the identification of specific hand landmarks—such as 

fingertips and joints—to interpret gestures and map them to virtual controls like 

mouse movement and clicks. 

Recent studies have shown successful applications of gesture recognition in virtual 

reality systems, smart home controls, and assistive tools for individuals with 

disabilities. Despite these advancements, many existing systems rely on complex 

hardware setups or suffer from latency and accuracy issues. To address these 

challenges, this project proposes a Virtual Mouse System that uses only a webcam 

and Python-based tools to allow users to interact with their computer through simple 

hand gestures. This system replaces the need for physical devices, providing a 

flexible and user-friendly interface that responds to real-time movements. 

In addition, the project emphasizes inclusivity and adaptability, making it a valuable 

tool in environments such as smart classrooms, public kiosks, and touchless 

workstations. The potential of gesture-controlled systems extends beyond 

convenience—it paves the way for a more accessible and hygienic computing 

experience, especially in a post-pandemic world. As research in this field continues 

to grow, such systems are expected to redefine the standards of interactive 

technology. 

RELATED WORK 

Research in the field of gesture-based human-computer interaction has grown 

considerably over the past decade, driven by the demand for contactless interfaces 

and more natural user experiences. The idea of using hand gestures to control 

virtual systems has attracted attention due to its applicability in smart devices, 

accessibility tools, and immersive technologies. 
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In 2020, A. K. Sharma and S. Mishra [1] proposed a real-time hand gesture 

recognition system utilizing computer vision techniques. By employing 

segmentation and feature extraction, they achieved 85% accuracy. However, their 

model's reliability decreased under varying lighting and cluttered backgrounds. 

P. Singh and R. Kumar [2], in 2019, introduced a virtual mouse system using contour 

detection and convex hull methods. Their system could handle basic functionalities 

like cursor movement and left click. Despite this, it lacked scalability and struggled 

in visually noisy environments. 

In 2021, K. Lee and H. Kim [3] enhanced gesture recognition by incorporating 

machine learning to improve classification accuracy. Their system showed robust 

performance under diverse conditions, though hand positioning variations still 

impacted accuracy. 

A 2015 study by S. Rautaray and A. Agrawal [4] explored gesture-driven virtual 

mouse events using contour-based recognition. The system was efficient in 

controlled conditions but faced adaptability issues in dynamic lighting environments. 

In 2022, N. Gupta and S. Gupta [5] presented a real-time virtual mouse focused on 

environmental adaptability. While it improved responsiveness under specific 

conditions, it struggled with gesture recognition consistency during dynamic 

environmental changes. 

Also in 2022, S. Sharma and P. Verma [6] developed a system using centroid 

tracking and convex hull methods to increase responsiveness. Although this 

improved real-time control, the model demanded significant computational 

resources, limiting use on low-end systems. 

T. Mehta and R. Joshi, in a 2021 study, introduced a MediaPipe-based virtual mouse 

system that used hand landmark detection to enhance real-time gesture precision 

[7]. It optimized processing time, yet required consistent hand alignment to maintain 

accuracy. 

M. R. Jain and D. Patel [8], in 2020, designed a gesture recognition system using 

Haar cascade classifiers 
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 and Kalman filters. Their model achieved low latency in basic environments but 

was less effective in dynamic scenes with frequent background variation. 

In 2023, V. Menon and K. Deshmukh [9] implemented a YOLO-based gesture 

detection approach, allowing for fast and localized gesture identification. However, 

its high computational demand limited deployment on resource-constrained 

systems. 

Lastly, R. Banerjee et al. [10], in 2023, proposed a hybrid gesture classification 

model combining convolutional neural networks with rule-based logic. The system 

supported user-customized gestures with high accuracy, though model complexity 

and training time were notable drawbacks. 

 

These collective efforts provide insights into the evolution of virtual mouse 

systems—from simple contour tracking to intelligent, adaptable gesture recognition 

using advanced frameworks. Despite significant advancements, most systems 

struggle with a consistent balance between accuracy, computational cost, and 

adaptability. The current work builds upon these foundations by integrating OpenCV 

and MediaPipe to develop a real-time, lightweight, and adaptive virtual mouse 

system using intuitive hand gestures. 

METHODOLOGY 

The methodology adopted in this research outlines the systematic approach 

followed to design and implement a Hand Gesture-Based Virtual Mouse System 

using OpenCV, MediaPipe, and PyAutoGUI. This system ensures a contactless and 

intuitive interaction with the computer by recognizing hand gestures in real time and 

mapping them to conventional mouse actions such as cursor movement, clicking, 

and scrolling. The approach emphasizes accuracy, responsiveness, and user-

friendliness, making it suitable for applications in accessibility, smart environments, 

and hands-free control systems. By leveraging computer vision techniques and 

machine learning-based landmark detection, the model efficiently captures, 

processes, and interprets gestures without requiring external hardware like gloves 

or sensors. This methodology has been adopted due to its robustness across 

varying lighting conditions and backgrounds, scalability across different computing 
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platforms, and adaptability for future extensions such as gesture-based media 

control or virtual keyboard input. The development strategy is structured into 

multiple integrated phases to ensure modularity, maintainability, and performance 

optimization. 

IMAGE ACQUISITION 

Live video feed is captured directly from the system's webcam using OpenCV’s 

VideoCapture function. The continuous stream of frames serves as the foundational 

input for all subsequent modules. This approach supports real-time processing and 

allows the system to detect dynamic hand movements on-the-fly. The webcam 

resolution is standardized at 720p to maintain a balance between processing load 

and recognition precision. 

PREPROCESSING 

Each captured frame undergoes multiple preprocessing steps to improve the clarity 

and usability of visual data. Initially, the image is converted to grayscale to reduce 

color complexities and computation. Gaussian Blur is applied to smooth the frame 

and eliminate minor pixel-level noise. Thresholding or segmentation techniques are 

then used to separate the hand region from the background. These operations play 

a crucial role in stabilizing detection and improving the accuracy of gesture tracking 

by minimizing irrelevant visual data. 

FEATURE EXTRACTION 

Using OpenCV’s contour detection mechanism, the boundaries of the hand are 

traced. The Convex Hull algorithm identifies the outer contour that tightly wraps 

around the hand. Convexity defects are calculated to pinpoint the spaces between 

fingers and detect finger tips accurately. Additionally, the center of the hand is 

determined by calculating the centroid of the detected contour. These spatial and 

geometric features act as primary cues for identifying different hand gestures. 

GESTURE CLASSIFICATION 

Gesture classification is performed using MediaPipe’s Hand Tracking solution 

which provides a robust 21-point hand landmark model. These landmarks include 

fingertips, joints, and the wrist, allowing precise identification of finger positions 
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and movements. Gestures are interpreted based on the relative distance and 

orientation of these landmarks. Some classified gestures include: 

�Open palm → Cursor moves based on hand movement 

�Closed fist → Click action 

�Two fingers up → Right-click 

�Thumbs up → Volume or brightness control (future extension) 

The classification method is rule-based, lightweight, and ensures real-time 

response with minimal computational cost. 

CURSOR CONTROL 

Once a gesture is identified, its corresponding action is executed using the 

PyAutoGUI library, which offers direct control over mouse events in the operating 

system. The system maps the hand's position to screen coordinates, enabling 

smooth cursor movement. Specific gestures trigger events like left-click, right-click, 

scroll, or drag. Careful calibration ensures that cursor motion aligns with hand 

movements and operates under a latency threshold of 150 milliseconds to 

maintain user responsiveness. 

REAL-TIME LANDMARK MODELING 

MediaPipe’s real-time hand tracking model plays a vital role in this project. It 

detects 21 landmark points per hand in each frame with high accuracy and 

stability. These landmarks enable precise modeling of hand posture and 

movement. Key aspects include: 

�Accuracy: >95% under stable lighting conditions 

�Frame Rate: Approximately 25 FPS ensuring fluid interaction 

�Support: Both left and right hands can be tracked simultaneously 

The model is highly efficient and runs directly on CPU without requiring GPU 

acceleration, making it ideal for lightweight systems. 
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GESTURE-TO-ACTION MAPPING STRATEGY 

This stage bridges the gap between gesture recognition and system response. 

Each gesture, once classified, is mapped to a specific system control action using 

a decision-mapping system. This logic layer improves modularity and supports 

future upgrades such as drag-and-drop, media controls, or browser navigation. 

The mapping is abstracted to allow easy integration of new gestures without 

reworking the core recognition model. 

EVALUATION AND TESTING 

The system was evaluated under multiple operational conditions to validate its 

real-time performance and robustness. Testing was conducted with varying 

lighting and background noise to ensure consistent behavior. Key performance 

metrics include: 

�Lighting Tolerance: Stable performance under both daylight and artificial indoor 

lighting 

�Cursor Lag: Maintained below 150 milliseconds for smooth user experience 

�Recognition Accuracy: Achieved an average of 92% across gesture types 

�Test Platform: Python 3.10, OpenCV 4.7, MediaPipe 0.10.9 on Windows 10 

�Hardware Specs: Intel i5 processor, 4GB RAM, standard 720p webcam 

The model proved to be robust, user-friendly, efficient for real-world applications. 

SYSTEM ARCHITECTURE 
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Each module performs a specific role—capturing input, processing the video 

stream, detecting gestures, and executing actions. The system ensures a smooth 

pipeline from input to action, with clear isolation between layers, allowing for easy 

debugging and future expansion. 

INPUT ACQUISITION AND SYSTEM CONFIGURATION 

The methodology adopted in this real-time hand gesture recognition system is 

fundamentally different from conventional dataset-driven models. Instead of relying 

on static images or labeled datasets, this system captures dynamic gesture data 

using a live video feed, making it highly adaptable and responsive. Each video frame 

becomes an instant data sample for feature extraction and classification, ensuring 

an interactive and immersive experience without the need for storing large datasets. 

The system is developed using lightweight, efficient libraries such as OpenCV, 

MediaPipe, and PyAutoGUI. It is designed to run on standard hardware without 

GPU dependency. Real-time gesture acquisition enables natural hand interactions 

with minimal latency and high accuracy across diverse conditions. Tables below 

present the full system environment and gesture-action mapping. 

Table 1: System Configuration and Environment Setup 

 
Table 2: Real-Time Gesture Patterns and Functional Mapping 

Component Specification 

Processor Intel Core i5 (7th Gen), 2.4 GHz 

RAM 4 GB DDR4 

Camera 720p HD Webcam, ~25 FPS 

Operating System Windows 10 (64-bit) 

Programming Language Python 3.10 

Libraries Used 
OpenCV 4.7, MediaPipe 0.10.9, PyAutoGUI 

0.9.53 

Frame Resolution 640 × 480 pixels 

Gesture Fingers Involved Mapped System Function 

V Shape Gesture (Dynamic 
Move) 

Index + Middle (V-separated) Cursor Movement (Track 
motion) 

Index Finger Only Index Left Click 

Middle Finger Only Middle Right Click 

Closed Fist All fingers folded Drag and Drop (Hold and move 
selection) 

Open Palm → Closed Fist 
Motion 

All fingers → Fist Multiple File Selection (Shift-like 
action) 

Thumb + Index Near (Nose 
Gesture) 

Thumb & Index pinch inward Volume / Brightness Control 

Open Palm (Idle) All fingers visible Default (No action — Rest state) 
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This revised mapping was iteratively tested in a controlled setting to ensure 

consistency and responsiveness. Each gesture is distinct in its landmark 

configuration, minimizing the chances of misclassification. Additionally, the real-time 

acquisition pipeline guarantees instant recognition without requiring dataset 

pretraining or model fine-tuning. 

The 21-point hand landmark model shown in the figure is used for real-time input 
acquisition and gesture tracking in our system. It includes five fingertips, 
intermediate joints for each finger, and a wrist base point. These landmarks are 
extracted using the MediaPipe framework, enabling precise mapping of hand poses 
such as open palm, closed fist, pinches, and directional finger gestures. The spatial 
coordinates of each point form the basis for rule-based recognition and 
mathematical processing, making this model essential for accurate gesture 
interpretation and seamless cursor control in our virtual mouse system. 
 

MODELING AND ANALYSIS 

The modeling component of this project captures and interprets dynamic hand 

gestures using a 21-point landmark system offered by MediaPipe. This model treats 

each frame as a live data input, extracting critical features such as fingertip 

positions, hand contours, and spatial geometry. Rule-based logic is employed to 

classify these gestures and map them to appropriate system-level mouse actions 

using PyAutoGUI. 

A simplified decision tree model is used to differentiate between various gesture 

states (e.g., open palm, fist, individual fingers), enabling real-time interpretation 

without needing ML training datasets. This modular gesture-action mapping 
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structure allows easy extension for future controls such as volume, brightness, or 

custom media control. 

From the analysis standpoint, the system was evaluated under varying ambient 

conditions and usage scenarios. Performance metrics such as response time, 

gesture recognition accuracy, and frame processing speed were analyzed. The 

average gesture-to-action latency was found to be between 120–150 milliseconds, 

while the system maintained a consistent frame rate of ~25 FPS. Landmark 

prediction accuracy exceeded 95% in well-lit environments, with high tolerance to 

minor occlusions or fast hand movements. 

Overall, this combination of lightweight modeling and rigorous performance analysis 

ensures that the system is both practical and scalable for real-world gesture-

controlled applications. 

 Table 3: Gesture Type vs Performance Metrics 

Figure 1: Gesture-wise Comparative Performance Analysis in the Virtual 

Mouse System 

Gesture Type Mapped Action 
Recognition 

Accuracy 
Average 

Latency (ms) 
Frame Rate 

(FPS) 

Open Palm (Move) Cursor Movement 94.5% 120 ms ~25 FPS 

Index Finger Only Left Click 92.3% 130 ms ~25 FPS 

Middle Finger Only Right Click 91.7% 140 ms ~24 FPS 

Closed Fist Drag & Drop 90.2% 150 ms ~23 FPS 

V-Shape (Index + 
Middle) 

Cursor Move + Direction 
Assist 

93.8% 125 ms ~25 FPS 

Open Palm → Closed 
Fist 

Multi-Selection Mode 91.1% 140 ms ~24 FPS 

Pinch/Nose (Thumb + 
Index Tip) 

Volume/Brightness 
Control 

89.9% 145 ms ~23 FPS 
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ALGORITHMS USED 

This section explains the algorithmic logic used in developing the Hand Gesture-

Based Virtual Mouse System. The approach is divided into two main categories: 

Rule-Based & Gesture-Based Logic and Programming-Based Algorithms, reflecting 

both intuitive design logic and real-time code-level implementation. 

RULE-BASED & GESTURE-BASED LOGIC 

1. Rule Matching System (Gesture-to-Action Mapping) 

In this logic, the system detects which fingers are open or closed and matches them 

against predefined gesture-action rules. 

2. Gesture Recognition Pipeline 

Each gesture is recognized using 21 hand landmarks from MediaPipe. These 

landmarks represent fingertips, joints, and the wrist. 

Pipeline Steps: 

1.Capture live frame from webcam. 

2.Detect hand using MediaPipe → Extract 21 landmark points. 

3.Use geometric comparison (x, y values) to decide finger state. 

4.Apply rule conditions based on finger status. 

5.Map to system-level actions (mouse/volume). 

PROGRAMMING-BASED ALGORITHMS 

1. Moving Average Filter for Smoothing Cursor 

This algorithm reduces cursor jitter by gradually averaging hand position values.    

 Where, smoothing_factor = typically between 0.6 and 0.9, 

Helps create smooth, stable movement on screen. 

Gesture Finger State Action Performed 
Index + Middle [0, 1, 1, 0, 0] Right Click 
All Open Palm [1, 1, 1, 1, 1] Cursor Movement 

Closed Fist [0, 0, 0, 0, 0] Drag and Drop 
Pinch (Nose) Thumb + Index Touch Volume/Brightness Ctrl 
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2. Bounding Box Detection using OpenCV 

Used to locate the hand contour and center it for landmark processing. 

x, y, w, h = cv2.boundingRect(contour) 

This bounding box helps filter unwanted objects and focus only on the detected 

hand. 

3. Finger Count Estimation via Euclidean Distance 

The distances between fingertips and the palm base (landmark 0) are measured. If 

the distance is above a threshold, the finger is considered extended. 

distance = math.sqrt((x2 - x1)**2 + (y2 - y1)**2) 

MATHEMATICAL MODELING & FORMULAS 

Explains math-based calculations used in gesture processing. 

4Mathematical Formulas:   

 

 

 

 

 

1.Contour Detection 

Contours are extracted using the cv2.findContours() function on a binary image 

(thresholded). Mathematically, the contour C is defined as the set of all pixel points 

where the intensity equals 255: 

C = { (x, y) | I(x, y) = 255 } 

Where: I(x, y) is the binary image value at pixel location (x, y), either 0 or 255. 

2.Convex Hull and Convexity Defects 

The convex hull H of a contour C is calculated as: 
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H = Conv(C) 

Where Conv(C) is the smallest convex boundary enclosing all points of the 

contour C. 

Convexity defects represent deviations from the convex hull, helping in finger 

detection. 

d = max(D(pi ,pj, f)) 

Where: 

�D is the perpendicular distance from the farthest point f between two hull points 

pi and pj on the contour not part of the hull, 

�Used to count fingures (number of gaps). 

3.Centroid Calculation 

The centroid (Cx, Cy) of a contour is derived using spatial image moments: 

Mij = Σx Σy xiyj I(x, y) 

From these moments: 

Cx = M10 / M00 

Cy = M01 / M00 

4.Bounding Box and Aspect Ratio 

A bounding rectangle is drawn around the hand region using: 

�Area = width × height 

�Aspect Ratio = width / height 

These parameters are used for gesture detection such as zoom, drag, or pinch 

based on size variation or bounding box distortion. 

5.Euclidean Distance for Finger Detection 

To detect if a finger is raised, the Euclidean distance between a fingertip and its 

corresponding base joint is calculated: 

d = √((x2 − x1)² + (y2 − y1)²) 
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6.Cursor Mapping & Coordinate Smoothing 

To map hand coordinates to the screen: 

X = (x / W) × Sw 

Y = (y / H) × Sh 

Where: 

(x, y) = hand landmark position 

(W, H) = webcam frame width and height 

(Sw, Sh) = screen resolution 

Cursor Smoothing: 

To smoothen cursor movement and reduce jitter: 

Xt = α × Xt + (1 − α) × Xt −1 

Yt = α × Yt + (1 − α) × Yt −1 

Where: 

α is the smoothing factor (0 < α < 1), typically 0.3 to 0.9. 

 

RESULTS AND DISCUSSION 

The proposed Virtual Mouse System was successfully developed using 

MediaPipe for real-time hand tracking and gesture recognition. It achieved a 

touchless interface for controlling basic mouse operations—cursor movement, 

clicking, drag & drop, and optional volume/brightness control—using only webcam 

input and finger gestures. 

The system responds with minimal latency (~50–80ms) and performs well 

under various lighting conditions. Notably, the left-click gesture, triggered via index 

and thumb pinch, demonstrated reliable detection. System functions like cursor 

control and volume/brightness adjustment via slider-like gestures exhibited 

consistent performance after minor calibration. 
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             Table 4: Performance Metrics of Virtual Mouse System 

 

Figure 2: Accuracy (%) of Virtual Mouse 

 

 

Component Metric Accuracy 

 

Remarks Component 

Hand 
Landmark 
Detection 

21 key points 
per hand 

95–98% Very accurate 
in good 
lighting 

Hand Landmark 
Detection 

Cursor 
Movement 
Tracking 

Finger to 
screen 

mapping 

90–93% Smooth 
control, varies 

with hand 
speed 

Cursor 
Movement 
Tracking 

Click Detection 
(Pinch) 

Index + middle 
finger gesture 

85–90% Minor false 
positives with 
shaky hands 

Click Detection 
(Pinch) 

Volume 
Control 

(Optional) 

Finger 
distance 

measurement 

80–85% Sensitive to 
hand depth 
and lighting 

Volume Control 
(Optional) 

Brightness 
Control 

(Optional) 

Gesture-to-
slider mapping 

80–85% Needs 
calibration 
based on 

screen levels 

Brightness 
Control 

(Optional) 
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Figure 3: System Module Contribution to Overall Performance                                                          

Table 5: Gesture Recognition Accuracy vs Lighting 

 

                   

                   

 

 

 

 

Table 6: Gesture Type vs Latency 

Lighting 

Condition 

Detection 

Accuracy 

Cursor 

Lag (ms) 
Comment 

Bright Natural 

Light 
97% 50ms 

Very accurate and 

responsive 

Indoor 

Lighting 
90% 70ms 

Minor recognition 

delay 

Dim Lighting 75% 110ms 
Reduced finger 

detection accuracy 

Gesture Type Avg Detection Time (ms) Action Type 

Move Cursor 60 ms Continuous 

Left Click (Pinch) 80 ms Discrete 

Right Click 85 ms Discrete 

Drag & Drop 70 ms Hold & Move 

Volume Control 95 ms Slider-like 
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Figure 4: Accuracy vs Lighting Intensity                                                          

5. UI Control and Usability 

The system was also tested for functional interactions like file selection, folder 

navigation, and volume control. It consistently allowed smooth interaction with 

desktop UI elements, verifying its usability in real-world desktop applications. 

Output Screens Section 

Screen 1:  Hand Detection Using MediaPipe Image                                             

Webcam view showing 21-point hand landmark detection using MediaPipe 

Screen 2:  Left Click and Right Click Gestures 

Click gestures triggering left and right mouse click respectively. 
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Screen 3: Drag & Drop Gesture       Screen 4: Volume and Brightness Control 

 

 

Screen 4: Desktop UI Control via Gestures 

Desktop file selection and navigation controlled entirely through hand gestures 
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CONCLUSION 

The proposed Hand Gesture-Based Virtual Mouse System successfully bridges the 

gap between human intuition and machine interaction by utilizing computer vision 

techniques, specifically through MediaPipe and OpenCV frameworks. By replacing 

traditional input devices with hand gestures, this system offers a contactless, 

hygienic, and intuitive user interface, a critical advancement in post-pandemic 

environments like hospitals, public kiosks, and laboratories. 

The system achieves real-time performance, enabling accurate gesture recognition 

for core functionalities such as cursor movement, click operations, drag-and-drop, 

volume, and brightness control. Its lightweight design, hardware independence 

(requiring only a webcam), and cross-platform capability make it highly accessible 

and cost-effective. Furthermore, it accommodates customization and extension, 

providing a robust base for broader human-computer interaction applications. 

In addition to technical achievement, this project facilitated a deeper understanding 

of real-time systems, gesture recognition pipelines, and system integration—laying 

a strong foundation for future innovations in AI-powered interfaces. The outcomes 

of this project affirm that gesture-based control systems can be viable, reliable, and 

adaptable alternatives to conventional input methods, pushing the boundaries 

toward the future of natural user interfaces (NUI). 

FUTURE WORK 

Future developments of the virtual mouse system can focus on enhancing gesture 

recognition accuracy using deep learning models and deploying them on edge 

devices for real-time, low-latency performance without relying on internet 

connectivity. Integrating mobile compatibility through Android or iOS apps, as well 

as web-based platforms using JavaScript or WebAssembly, can extend usability 

across devices. Gesture customization will allow users to define their own 

interaction patterns for specific tasks, while full-body tracking can enable immersive 

control in virtual and augmented reality environments. The system can also evolve 

to support secure gesture-based authentication using biometric patterns, and 

operate seamlessly across a range of devices including smart TVs, IoT systems, 

and wearables. These advancements position the system as a flexible and scalable 

interface for future human-computer interaction across diverse platforms. 
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