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Abstract: Forecasting of life expectancy of a country enables healthcare industry and government to plan and execute the 
future health programs by appropriate resource allocation, long-term strategy and assess the demands on healthcare into the future. 
In this study a univariate seasonal autoregressive integrated moving average model is used to model the historical data of annual 
life expectancy of individual countries and groups of countries, 266 in total.  Stationary tests are used to estimate nonstationarity. 
Difference tests are used to estimate the integrated order of the timeseries. The seasonal periodicities are estimated from Fourier 
transform of the data. Best model parameters are estimated using Broyden Fletcher Goldfarb Shanno (BFGS) algorithm. The 
algorithm searches for using grid search over the parameter space. The selected parameters are fine-tuned using 5-fold cross 
validation. The best model is fitted to test data and error metrics are computed.  Finally, the Life expectancy is forecasted along 
with confidence intervals for the next 10 years into the future for each country. Python programming framework is used in the 
study.  

Keywords: SARIMA model, ARMA model, Pole-Zero diagram, Nonstationary tests, Seasonal period estimation Timeseries 
forecasting, Timeseries Integrated Order 

1. Introduction 
 
        Life Expectancy is one major indicator of citizen’s quality life in a country or a region. Forecasting life expectancy of a 
country enables healthcare industry and government to plan and execute the future health programs by appropriate resource 
allocation, long-term strategy and assess the demands on healthcare into the future. The forecasting of life expectancy can be 
done by using traditional timeseries models such as seasonal autoregressive integrated moving average (SARIMA) model [1] 
and its variants [2, 3].  The (S)AR(I)MA model was successfully applied in the analysis and prediction in applications such as 
seismology, [4],  biomedical signals [5], traffic-signal control [6], communications [7], radar systems [8] and many more. 
Speech data form a quasi-stationary timeseries and extensively studied in the name of linear prediction analysis to identify the 
time-varying formants, frequencies at which vocal cavity resonates [9, 10]. The time evolution of phonetic-acoustics events in 
time-frequency plane was studied in an Indian language [11, 12, 13]. Statistical characteristics (moments and joint moments) 
of a nonstationary sequence vary with time, making it very difficult to model, predict and forecast the timeseries accurately. 
Several statistical tests were developed to detect nonstationarity in the timeseries. Some popular tests used to identify the 
nonstationarity in a timeseries [1, 2, 3] are tabulated in Tables 1 and 2. A nonstationary timeseries can be converted to a 
stationary timeseries by differencing the given series d-times where � is a small integer.  In most cases � = 1 �� 2 must be 
sufficient; � = 3  being a rare case, and more than 3 may not be required at all, in real world scenarios. The difference tests 
are designed to estimate the � value. The nsdiff() test is used for seasonal differencing, while ndiff() test is used for nonseasonal 
differencing. In fact ndiff() uses one of the ADF, KPSS and PP tests; and nsdiff() uses CH Test and OCSB Test. Information 
criteria such as Akaike information criterion (AIC) are used to compute d-value.  
 

Table 1 
Nonstationarity Tests 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2 

Test  Null  
Hypothesis (�0)    

Alternate 
Hypothesis 
(�1) 

Augmented 
Dickey-Fuller 
(ADF) 

Timeseries are nonstationary 
i.e. has a unit root 

Timeseries is 
stationary 

Kwiatkowski-
Phillips-Schmidt-
Shin (KPSS) 

Timeseries are trend 
stationary 

Timeseries is 
nonstationary 

Phillips-Perron 
(PP) 

Timeseries is nonstationary Timeseries is 
nonstationary 
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Difference Tests 

Test  Purpose of the test    
Osborn-Chui-
Smith-
Birchenhall 
(OCSB) 

To find number of times, the difference operation is to 
be applied for converting to stationary series 

Canova-Hansen 
(CH)    

To find number of times, the difference operation is to 
be applied for converting to stationary series 

 
In present study, a univariate seasonal autoregressive integrated moving average (SARIMA) model is used to model the 

historical data of annual life expectancy of individual countries and groups of countries. The model parameters are selected 
using the grid search over the allowable parameter space, using BFGS algorithm while minimizing the corrected AIC.  Using 
the best model the life expectancy for the years (2014 – 2023) and error metrics are computed. The life expectancy for the 
period 2024 – 2033 is forecasted. The predictions and forecasts are computed for all countries, but results are presented for 18 
countries, which are selected based on their unique trends/patterns in the historical data. The confidence intervals for the 
forecasts are computed.   

Rest of the paper is framed as follows. Section II reviews the related work on the timeseries forecasting using ARIMA 
and related models along with applications of timeseries models recently used.  Section III presents the proposed methodology 
and describes the dataset used in the study.  Section IV presents the modelling experiments and analysis results of the proposed 
methodology. In section V, conclusions on the present work are drawn and future scope of work is projected.   

2. Literature Review 
 
This section provides a review of related work chronologically year-wise. In [14] the demand in a food company was forecasted 
using ARIMA model by using Box–Jenkins procedure. The model was evaluated using four criteria: Akaike, Schwarz 
Bayesian, standard error and maximum likelihood. The resultant forecasts on food demand were used to make the appropriate 
production planning to eliminate food waste and avoid cost losses. Hosam H. A. et. al., [15] forecasted the water consumption 
and revenues from water service using Auto-Regressive Integrated Moving Average (ARIMA), Hybrid ARIMA, Singular 
Spectrum Analysis (SSA), and Linear Regression. A dataset collected from Khan Younis municipality (KHM) was used in 
the study and identified ARIMA-ANN as the best algorithm. The maximum water consumption five years after 2017 would 
increase by about 8.4%. In [16] linear ARIMA and Holt’s model were studied among other non-linear methods like neural 
network auto-regressive model. The system was aimed at arriving the best model to predict the risk of deaths and infections. 
The second task was the implementation of the third wave of infections and deaths in Russia.  The study prompted about the 
limitations of study during time-changing conditions, and state that time-series forecasting can be accurate only in the short 
term and suggests for nonlinear timeseries models. The results have shown the importance of seasonality in timeseries 
modelling. However, estimation of seasonal period is still a challenge and in general grid search is used. In [17] a study was 
made to examine the impact of government's policy intervention on dispensing of the medicine, quetiapine. The dispensing 
claims data was used to build an ARIMA model A study was made to examine the impact of government's policy intervention 
on dispensing of quetiapine. The dispensing claims data was used to build an ARIMA model using auto.arima() method of 
the forecast package in R. The study highlighted the advantages of ARIMA model compared to segmented regression (SR) 
model. A study on Covid-19 cases in India [18] utilized a hybrid model comprising ARIMA model and autoregressive neural 
network for extracting linear and nonlinear relationships in the data respectively. The study claims that low error metrics were 
achieved by the hybrid model compared to ARIMA model and even LSTM model for short-term prediction. In [19] the aircraft 
failure rate was analysed by Grey Verhulst Model, ARIMA and Artificial Neural Network with back propagation. These 
models were evaluated using the traditional error measures: MAE, RMSE and PMAE, and other metrics: Nash-Sutcliffe 
Efficiency coefficient (NSE), Equal Coefficient (EC), Index of Agreement (IA) and Theil Inequality Coefficient (TIC). The 
best ARIMA model was used to predict and forecast aircraft failure rates. The results demonstrated that the combination model 
performed much better than any of the single models. Also the combination model based on Induced ordered weighted 
averaging technique worked better than other combination models.  
         Kin Wai Ng. et. al. [20] analyzed the social media activity on different topics from geo-political contexts such as 
Venezuelan Political Crisis of 2019, Chinese-Pakistan Economic Corridor, and Belt and Road Initiative in East Africa using 
three models: ARIMA, Hawkes processes and Shifted baseline.  Using the best fit model social media activity was forecasted 
for a week into the future at granularity of one hour. The results showed that ARIMA model performed the best among the 
three techniques, which highlighted the capability of ARIMA model to flexibly model the trends, autocorrelation and 
seasonality of different types of impacts. In [21] ARIMA model was applied on telecommunication subscriber usage data to 
predict the growth in the data usage. In [22] author did several experiments on using auto.arima() function and found that the 
usage auto.arima() is very tricky.  One must carefully see the optional hyperparameters available for auto.arima(), especially 
parameter search method: step search, random search, or grid search.  In case of first two methods, there is a possibility that 
the best model may be missed.  In [23] an ARMA and ARIMA models were fitted to annual mean temperature data. The 
ARMA fitted better than ARIMA, which brings out the importance of stationarity tests in timeseries analysis.  
         Univariate and vector ARMA models, and dynamic linear models were reported on epilepsy research using R-
environment in [24].  The review study of [25] broadly includes linear and nonlinear timeseries methods in theory. Some 
analytical expressions for ARMA and GARCH models were presented. However, no simulations or experiments on real data 
were conducted to support the theory.  US healthcare expenditure was forecasted using both Random Forest and ARIMA 
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models with unity integrated order in [26]. The study highlights that the random forest of machine learning could not perform 
well compared to ARIMA model. In [27] an over-identified system comprising of the features like government health per 
capita expenditure was developed and the correlations among the features was studied. The study has shown objectively that 
the government’s expenditure on public health significantly improves citizen’s average health status. In a study [28] ARIMA 
model was applied to analyze the five timeseries: gross domestic product, unemployment rate extended National Consumer 
Price, and so on. Five different models, one for each timeseries, was trained on the historic data using optimum model orders.  
The best fit models were used to forecast the series next 5 years into the future. In [29] monthly water level data of Morava e 
Binçës river from 2014 to 2021 was analysed using ARIMA and Error Trend and Seasonality (ETS), or Exponential Smoothing 
(ES) models. Best fit model was used to predict the periods during which low and high-water levels may occur between 2022 
and 2024 were predicted. Saleh Al Sulaie., [30] applied an ARIMA model to analyse the number of traffic crashes in Saudi 
Arabia for the period: 2002-2022.  The number of injuries per each 1,000 traffic accidents decreased, even though there was 
an increasing trend in the number actual accidents. The number of injuries was forecasted using the best fitted ARIMA model.  
         In [31] regression in combination with ARIMA was used to fit timeseries model to the stock prices. The combination 
was used to counter the limitations of ARIMA in forecasting long into the future. Here the regression captures seasonal patterns 
effects. Though the conceptual reason was not explicitly stated in that reference, author conjectures that if the residual after 
regression model is not purely random and correlated, then fitting ARMA model to the residual decorrelates the residual. In 
[32] Long Short-Term Memory networks and ARIMA were used to model the stock prices of Apple Inc., for the years 2016 
to 2024. The residual from the ARIMA model was fed to LSTM model appropriately gated. The metrics RMSE, MAE, 
Directional accuracy and �² value was found to be the better for the hybrid model.  The study of [33] analyzed the microbial 
density for monitoring water purification system. The data was first aggregated cumulative logarithmically transformed and 
then the linear, exponential and Holt-Winters, ARIMA methods were fitted.  In [34], the monthly London Metal Exchange 
price of base metals was forecasted using an autoregressive Light Gradient Boosting Machine (LightGBM) and by a 
combination of the LightGBM algorithm and ARIMA model. The performance of these two models was compared with 
performance of three benchmark models: a global mean (GMM) model, an ES model and an ARIMA model. The LightGBM 
model outperformed the benchmark models in forecasting the price for the next 6 months into the future for nickel and 
aluminium returns, However, the ensemble method performed well in case of zinc and copper returns. In case of forecasting 
of tin and lead returns, the ARIMA model performed well. In a very recent review study [35] on SARIMA models in python 
environment, the model issued such as stability, nonstationarity and invertibility were discussed in detail using pole-zero 
diagrams of the model. The study of [36] explores the ARIMA novel to predict CPC pressure based on head losses.  The study 
used the Box-Jenkins methodology to analyze timeseries and the proposed system enhances the identification of anomalies in 
pressure measurements and thus enabling efficient pressure management in the network. In a very recent work [37], a SARIMA 
model was applied on WHO’s health expenditure data of 183 countries. The seasonal period was estimated using Fourier 
transform, and the health expenditures of all countries were forecasted for the period 2025-29.  
         In the present study, SARIMA model is used to fit the global life expectancies. In the next section, the theoretical 
background and algorithms of the proposed models are presented.  

2.1. Theoretical framework 
 
A general time series model ������ (�, �, �)(�, �, �)� is mathematically specified [2, 3] as recursive equation given below 
 

�� = (������ + ������, … , +������) + (������� + ��������, … , +��������) 

+�� + (������ + ������, … , +������) + (������� + ��������, … , +��������)       ……….       (1) 

where: 

y is the time series, � is the driving force,  
(p, q) are the orders of AR and MA parts (nonseasonal),  
(P, Q) are the orders of AR and MA parts (seasonal),  
(d, D) are nonseasonal and seasonal integrated orders,  
� is the unit-delay operator, 
��, ��, … , �� are the parameters of nonseasonal AR part,  

��, ��, … , �� are the parameters of nonseasonal MA part,  

���, ���, … , ��� are the parameters of seasonal AR part 
���, ���, … , ��� are the parameters of seasonal MA part. 

 
Autocorrelation and partial correlations are useful exploratory tools of a timeseries. The autocorrelation of a stochastic 

timeseries y having statistical mean ��and variance ��
� is given by [6] 

ρ� = ����� − �������� − ����/��
�                                                         ……….     (2)  

and the one-sided sample autocorrelation estimate of a finite timeseries of length N is given by 

ρ�� = ∑ (�� − �� )(���� − �� ) (�� − �� )�⁄���
���   � = 0, 1, 2, … , � − 1                                   ……….    (3) 

where �� is the sample mean of the finite timeseries. The partial autocorrelation of the timeseries is given by 

φ�,� = ��� − ∑ φ���,�����
���
��� � �1 − ∑ φ���,���

���
��� ��                                           ……….    (4) 
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and its estimate φ��,� is obtained by replacing the parameters φ���,� by their estimates φ����,� and replacing the correlations 
���� and �� respectively by their estimates ����� and ��� in Eq (4). If longer tails with gradual decay are observed in the (partial) 
autocorrelation, it signals a nonstationarity in the timeseries.  Statistical characteristics (moments and joint moments) of a 
nonstationary sequence vary with time, making it very difficult to model, predict and forecast the timeseries accurately. The system 
equation corresponding to nonseasonal part of the recursive equation Eq (1) is given by [7] 

H(�) =
Θ(�)

∅(�)
=  

1 + ��� + ����, … , +����

1 + ��� + �����, … , +���� 

      ……….    (5) 
where ∅(�) is nonseasonal AR polynomial, Θ(�) is nonseasonal MA polynomial, ∅�(�) is seasonal AR polynomial and Θ�(�) is 
seasonal MA polynomial. For the timeseries to be stationary, the polynomials ∅(�) and ∅�(�) must have roots outside the unit 
circle in z-plane. For the model to be invertible, the polynomials Θ(�)  and Θ�(�)  must have roots outside the unit circle.  
Invertibility means the model can be inverted to derive the driving noise x from the timeseries y, so that estimate of driving noise 
variance ���

� (which is also one of the model parameters) can be obtained. Thus, random selection of MA and AR coefficients may 
not result in a causal (realizable), stable and invertible system/model.  A timeseries is simulated using the parameters: [��, ��] =
[0.35, −0.48], p = 2, ��� =  0.55, � = 1, [��, ��] = [0.35, −0.5] , q = 2, ��� = 0.75, � = 1.   The poles and zeros of the 
simulated model are computed by using the built-in method .roots() of numpy package, is visualized using python code 
(customized) in Fig 1. In the figure, the marker ‘o’ represents zero and the marker ‘x’ represent a pole. The roots of nonseasonal 
AR (poles) and MA (zeros) polynomials are shown in Fig 1(a). The roots of seasonal AR (poles) and MA (zeros) polynomials are 
shown in Fig 3(b) The simulated system is stable and invertible, as all the roots are outside the unit circle.  

 
Figure. 1. 

Pole-Zero diagram of an example ARIMA timeseries (a). Nonseasonal model (b). Seasonal model. 
 

 

3. Research Methodology 
 
        Based on theoretical information provided in section 2.1, the research methodology is proposed, and the algorithm is 
developed in this section.  The dataset details are also provided in this section. 

3.1. Participants 
 
        In present study, the secondary dataset of global annual life expectancy available at WHO website [50] is used.  The 
dataset gives the annual life expectancy of 266 individual countries or groups of countries in total for the years 1960 to 2023. 
Some groups of countries specified in the dataset are International Development Association (IDA) countries, International 
Bank for Reconstruction and Development (IBRD) countries, heavily indebted poor countries (HIPC) countries, IBRD only, 
IDA & IBRD total, IDA total, IDA blend, IDA only and so on. The data of all 266 samples (rows of .CSV data file) are 
analyzed using the proposed methodology.   The results of analysis are presented for only 18 countries, which are selected 
based on their unique trends/patterns in the data.  

3.2. Instruments 
 

An 70% (i.e. for the period 1960 – 2003) of timeseries is used for training an ARIMA model.  The model parameters are 
selected using the grid search over the allowable parameter space, using BFGS algorithm while minimizing the corrected AIC.  
The trained model is validated using 5-fold cross validation by adding an additional 15% of data to the training data. Using 
the best model the life expectancy for the years 2014 – 2023 (test data) is predicted and error metrics are computed. The life 
expectancy for the period 2024 – 2033 is forecasted. The predictions and forecasts are computed for all countries, but results 
are presented for 18 countries, which are selected based on their unique trends/patterns in the historical data. The trend or 
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profile of the forecast appears to be in line with that of the historical data subjectively. No objective measures are computed 
as there is no ground truth for forecasts. However, the confidence intervals for the forecasts are computed.   
 

Algorithm for ARIMA Model building and forecasting  
 
Step 1. Initiate the country serial no (n) =1.  

Step 2. Read the life expectancy timeseries data for the years 1960 to 2024 of the country(n). Check for any missing data for 
any year. If data is missing, go to Step 19. 

Step 3. Segment the timeseries data into two parts: training data (first 70% of samples) and test data (last 30% of samples).  

Step 4. Conduct the stationarity tests: ADF and KPSS tests and identify the training data as stationary (S) or nonstationary 
(NS). 

Step 5. Conduct the difference tests and estimate number of nonseasonal successive differences �� = (���, ���, … … ) required 
to convert the training data to stationary data. 

Step 6. Conduct the seasonal difference tests and estimate number of seasonal successive differences (�� = (���, ���, … … )) 
required to convert the training data to a stationary one.  

Step 7. Apply successive differences as specified by �� and �� . 

Step 8. Compute full autocorrelation (ACF) and partial autocorrelation (PACF) of the training data using the expressions (2) 
and (3). 

Step 9. Visualize the correlation patterns optionally.   

Step 10. Apply a threshold on ACF and PACF and identify the lags (���,  ���, … … ) with correlation values above the threshold.  
These are the seasonal periods estimated from the correlation analysis of the timeseries.   

Step 11. Compute Fourier spectrum of the training data and identify peaks and their frequencies ���, ���, … ).  in the spectrum.  
These are the seasonal periods estimated from the frequency analysis of the timeseries.   

Step 12. Compute the seasonal periods (1 ���⁄ , 1 ���⁄ , … ). 

Step 13. Create the combined vector of the estimated seasonal periods: �� =   ����,  ���, … , 1 ���⁄ , 1 ���⁄ , … � using the seasonal 
periods estimated from ACF and Fourier transform. 

Step 14. Compute the maximum likelihood Estimate of the model orders �̂, ��, ��, ��  by applying Broyden-Fletcher-Goldfarb-
Shanno (BFGS) algorithm of the training data. 

Step 15.  Repeat step 14 for all parameters (grid search) over the parameter space:  (1, 2, … , ���� ),
(1, 2, … , ���� ), (1, 2, … , ���� ), (1, 2, … , ���� )  where ����, ����, ����and ���� are predefined maximum orders. 

Step 16. Select the optimum model parameters ����, ���� , ���� and ���� that give the minimum value of Akaike Information 

Criterion (AIC). 

Step 17. Using the optimum model, predict the timeseries for the duration of testing data. 

Step 18. Compute the error metrics: MAE, MAPE and RMSE using the expressions: MAE = ∑ |�� − ���|�
���    MAPE =

(1 �⁄ ) ∑ |�� − ���| |��| ×  100⁄�
���  and RMSE = �(1 �⁄ ) ∑ (�� − ��� )��

��� . 

Step 19. Forecast the life expectancy for the next 6 years into the future. 

Step 20. Plot the full time series data as dashed line along with markers. Overlay the plots of the predicted data and the 
forecasted data with a different color. Overlay the confidence intervals for the forecasts as patch area.                                

Step 21. Increment the country’s serial number: � = � + 1. If � <  ��  (total number of countries), go to Step 2. 

Step 22. Stop 

4. Implementation and Results 
 
        This work is implemented using python programming language in the framework of Anaconda distributed spider IDE on 
the laptop. The range of time variable is 1960 – 2023, with a time resolution of one year. The life expectancy of 18 countries: 
Aruba, United Arab Emirates, Argentina, Burkina Faso, Bermuda, China, Cote dIvoire, Denmark, Estonia, France, Micronesia 
Fed. Sts., India, Japan, Madagascar, Northern Mariana Islands, Solomon Islands, United States and South Africa are shown in 
Fig. 2 and Fig. 3. The countries are selected so that distinct trend patterns are included in the study.  The ACF and PACF of 
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these timeseries are shown in Fig. 4 through Fig. 7 respectively. The full autocorrelations have long tails indicating 
nonstationarity. The confidence interval is shown in pale blue, at first lag for all countries. However, there are few significant 
lags within the confidence interval touching the boundary. 
 

Figure. 2. 
Life expectancy plots of 1 - 9 countries (1960 to 2023) 

 

 
 

Figure. 3. 
Life expectancy plots of 10 - 18 countries (1960 to 2023) 

 

 
 

Figure. 4. 
Autocorrelations of Life expectancies of first set of 9 countries 
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Figure. 5. 

Autocorrelations of Life expectancies of second set of 9 countries 
 

 
 

Figure. 6. 
Partial autocorrelations of Life expectancies of first set of 9 countries 

 

 
Figure. 7. 

Partial autocorrelations of Life expectancies of second set of 9 countries 

Journal of Informetrics(ISSN 1875-5879) Volume 19 Issue 3

PAGE NO: 277



  

 
  
The fourier transforms of the life expectancy of 18 countries are shown in Fig.  8 and Fig.  9. The peaks in spectrum are shown as 
red dots. Each peak indicates a periodicity in the timeseries and their location is the frequency. The reciprocal of the frequency 
gives the periodicities in the timederies. The first peak is to be ignored as it indicates the period (� = 1) corresponding to the 
sampling index of the original timeseries. The fouries coefficient at zero frequency is always zero, since mean is subtracted from 
th data. The stationarity tests (ADF and KPSS)  and difference tests are conducted on the data. The results of stationarity tests are 
shown in Table 3  and 4 respectively. The columns are the t-Stat (test statistic), pValue (probability value), cValue (critical value 
for the t-Stat at 5%),  number of lags used (#Lags), and  the number of observations used (#Obs).  If pValue > α, the significant 
level (here it is 0.05)   the null hypothesis H0 is rejected, and the alternative hypothesis H1  is accepted. It may be noted that the null 
hypothesis and alternative hypothesis are different for different tests as given in Table 1 and Table 2. The decision of nonstationarity 
is given in the last column (NS for nonstationary and S for stationary). The results of difference tests are shown in Table 12. The 
column 0 is the row index. Columns 1-3 are the number of nonseasonal differences (d) to convert the timeseries into stationary 
one. Column 4 is the maximum of the columns 1-3. Columns: 5-6 are the number of seasonal differences (D)  to convert the series 
into stationary one. The last column is the minimum of the columns 5 and 6. 

Figure 8 
Fourier transform of Life expectancies of first set of 9 countries (Peaks in the spectrum are shown as red markers). 
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Figure 9 
Fourier transform of Life expectancies of first set of 9 countries. Peaks in the spectrum are shows as red dots. 

 
 

 
Table 3 

Results of  ADF test. (NS = nonstationary and S = stationary 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Table 4 

Results of  KPSS test. (NS = nonstationary and S = stationary 
 

Country t-Stat   pValue   cValue['5%'] #Obs   #Lags Stationary 

Aruba  
United Arab Emirates  
Argentina  
Burkina Faso 
Bermuda  
China 
Cote dIvoire 
Denmark  
Estonia 
France  
Micronesia, Fed. Sts.  
India  
Japan  
Madagascar 
Northern Mariana  
Solomon Islands  
United States 
South Africa 

-2.982 
-5.089 
-2.057 
-2.510 
-4.102 
-3.476 
-3.377 
 -3.814 
-2.254 
-0.197 
-0.414 
 -4.467 
 -4.242 
-3.989 
-4.230 
 -0.238 
 -2.748 
-2.368 

0.304 
0.001 
0.794 
0.563 
0.023 
0.119 
0.147 
0.052 
0.703 
0.998 
0.997 
0.007 
0.015 
0.033 
0.016 
0.998 
0.427 
0.643 

-3.954 
-3.965 
-3.959 
-3.949 
-3.939 
-3.940 
-3.939 
-3.965 
-3.956 
-3.965 
-3.931 
-3.937 
 -3.930 
-3.939 
-3.943 
-3.931 
-3.945 
-3.956 

12 
16 
14 
10 
 5 
 6 
 5 
16 
13 
16 
 1 
 4 
 0 
 5 
 7 
 1 
 8 
13 

51 
47 
49 
53 
58 
57 
58 
47 
50 
47 
62 
59 
63 
58 
56 
62 
55 
50 

NS 
S 

NS 
NS 
S 

NS 
NS 
NS 
NS 
NS 
NS 
S 
S 
S 
S 

NS 
NS 
NS 

Country t-Stat   pValue   cValue['5%'] #Lags Stationary 

Aruba  
United Arab Emirates  
Argentina  
Burkina Faso 
Bermuda  
China 
Cote dIvoire 
Denmark  
Estonia 
France  
Micronesia, Fed. Sts.  
India  
Japan  

0.290 
0.200 
0.250 
0.119 
0.136 
0.293 
0.169 
0.270  
0.261 
0.146 
0.287 
0.183 
0.343 

0.010 
0.016 
0.010 
0.099 
0.069 
0.010 
0.031 
0.010  
0.010  
0.050  
0.010  
0.022 
0.010  

0.146 
0.146 
0.146 
0.146 
0.146 
0.146 
0.146 
0.146 
0.146 
0.146 
0.146 
0.146 
0.146 

4 
4 
4 
5 
4 
4 
5 
5 
5 
4 
4 
4 
4 

S 
S 
S 

NS 
NS 
S 
S 
S 
S 
S 
S 
S 
S 
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Table 5 

Results of nonseasonal and seasonal difference tests 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The forecasts of life expectancy for the next 10 years, i.e., for the years 2024-2033 for the 18 countries, are shown in 
Fig.  10 through Fig.  14. 
 

Figure 10 
The forecasts of health expenditures using optimum model (countries: 1 to 4) 

 
 
 
 

Figure 11 

Country t-Stat   pValue   cValue['5%'] #Lags Stationary 

Madagascar 
Northern Mariana  
Solomon Islands  
United States 
South Africa 

0.118 
0.125 
0.274 
0.230 
0.123 

0.100   
0.090  
0.010  
0.010  
0.093 

0.146 
0.146 
0.146 
0.146 
0.146 

5 
5 
5 
4 
5 

NS 
NS 
S 
S 

NS 

Country ADF PPSS PP ���_� OCSD CH ���_� 

Aruba  
United Arab Emirates  
Argentina  
Burkina Faso 
Bermuda  
China 
Cote dIvoire 
Denmark  
Estonia 
France  
Micronesia, Fed. Sts.  
India  
Japan  
Madagascar 
Northern Mariana  
Solomon Islands  
United States 
South Africa 

2  
2  
1  
0  
2  
1  
0  
2  
2  
2  
2  
1  
1  
2  
0  
2  
1  
0 

1 
2 
1 
1 
1 
2 
1 
2 
1 
1 
2 
1 
2 
1 
1 
2 
1 
1 

1 
1 
1 
1 
1 
0 
2 
1 
1 
1 
1 
0 
1 
2 
2 
1 
1 
1 

2 
2 
1 
1 
2 
2 
2 
2 
2 
2 
2 
1 
2 
2 
2 
2 
1 
1 

1 
3 
0 
0 
0 
0 
1 
0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
2 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
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The forecasts of health expenditures using optimum model (countries: 5 to 8) 

 
 
 

Figure 12 
The forecasts of health expenditures using optimum model (countries: 9 to 12) 

 
Figure 13 

The forecasts of health expenditures using optimum model (countries: 13 to 16) 
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Figure 14 

The forecasts of health expenditures using optimum model (countries: 17 and 18) 
 

 
 

Table 6 
Error metrics of selected SARIMA model 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Country MAE RMSE PMAE 

Aruba  
United Arab Emirates  
Argentina  
Burkina Faso 
Bermuda  
China 
Cote dIvoire 
Denmark  
Estonia 
France  
Micronesia, Fed. Sts.  
India  
Japan  
Madagascar 
Northern Mariana  
Solomon Islands  
United States 
South Africa 

0.4134 
0.6758 
0.6657 
0.1631 
0.0441 
0.1621 
0.2122 
0.2259 
0.5725 
0.2955 
0.2177 
0.6655 
0.2039 
0.2111 
0.0773 
0.3650 
0.3350 
0.8820 

0.7938 
1.0870  
0.9387 
0.2789 
0.0519 
0.2051 
0.3751 
0.2807 
0.7304 
0.3677 
0.2798 
1.2856 
0.2421 
0.3211 
0.1072 
0.5643 
0.5980 
1.5530 

0.0055 
0.0084 
0.0088 
0.0027 
0.0005 
0.0021 
0.0035 
0.0028 
0.0074 
0.0036 
0.0033 
0.0096 
0.0024 
0.0034 
0.0010  
0.0052 
0.0040 
0.0140 
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4. Conclusion 
 
      In the present study, the Fourier transform assisted ARIMA model is fitted to the historic global annual life expectancy 
data of the period 1960-2023. Fourier transform estimates into the periodicities of the timeseries.  The model is evaluated 
using 5-fold cross validation using validation data for the years 2016 to 2023 are used for validation and testing. Using the 
best fitted ARIMA model with respect to AIC, the timeseries is predicted for the test period, and then error measures MAE, 
MAPE and RMSE are computed.  The forecast of annual life expectancy for the period 2024 to 2029 is carried out. From the 
visualization plots the forecast appears to be in line with the patterns or trends present in the historical data. It is shown that 
the proposed method can be successfully used for predicting or forecasting data. It is conjectured that the proposed Fourier 
transform assisted ARIMA model performs better for reasonably longer data lengths, if the model  order is appropriately 
selected. 

5. Future Scope of Work  
 
The limitations of the study are the assumption of homoscedasticity, i.e., uniform variance throughout the range of the 
timeseries variable, limited number of samples (64) and short-term predictions. By considering a generalized autoregressive 
conditional heteroscedastic (GARCH) model may provide better prediction and forecasting performances. Vector ARIMA 
models and Deep learning techniques like LSTM model can also be explored for better forecasting of life expectancy, 
especially for long-term predictions. 

Data Availability Statement  
 
Data sharing is not applicable to this article as no new data were created or analyzed in this study. 
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