
 

Optimizing Credit Card Fraud Detection Through Extensive 
Investigation of PCA.   

 
Ravi Bhushan 1  Dr. Vineeta Khemchandani 2 

 

1School of Computer Science and Engineering.Galgotias University, Gr.Noida 
 

2School of Computer Applications and Technology Galgotias University, Gr.Noida 

Abstract 

Principal component analysis (PCA) is a statistical technique that 
simplifies complex data sets by reducing the number of variables while 
retaining key information. PCA identifies new uncorrelated variables that 
capture the highest variance in the data. Principal Component Analysis 
(PCA) is one of the most widely used data analysis methods in machine 
learning and AI. This manuscript focuses on the mathematical foundation 
of classical PCA and its application to a small-sample-size scenario and a 
large dataset in a high-dimensional space scenario. Specifically, we 
explore a straightforward approach for approximating PCA in the latter 
scenario. We hope this manuscript will provide readers a solid foundation 
on PCA and approximate PCA. The research presented in this paper 
applies the principal component analysis (PCA) of the real-world credit 
card fraud detection dataset, gathered from the transactions of the 
European credit card users. The original dataset is highly imbalanced; to 
further analyse the performance of tuned machine learning models, we 
need to compose an imbalanced dataset into a balanced one. Therefore, we 
apply the principal component analysis (PCA) to the credit card dataset to 
determine the number of attributes needed for the implementation of 
machine learning models. 

Keywords PCA , Eigen-decomposition, Approximate PCA, credit card fraud. 

1 Introduction 

Since the global pandemic of COVID-19 forced many economies to 
reevaluate the traditional onsite working environment paradigm, there 
has been a significant increase in e-commerce and online services based 
on credit card transactions. The bigger usage of credit cards was 
followed by an increased number of credit card frauds. This kind of 
criminal activity occurs when credit card authentication information is 
stolen with the malicious goal to buy merchandise or services without 
the owner’s permission or to withdraw money from it. For this reason, 
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it is imperative to implement PCA to simplifies complex data sets by 
reducing the number of variables while retaining key information.  
A common way to attempt to resolve this problem is to use 
dimensionality reduction techniques. One  of the most popular 
techniques for this purpose are: Principal Components Analysis 
(PCA)). PCA has been used in face recognition [27], [21], [28], [23], 
[22], handprint recognition [24], human-made object recognition [25], 
industrial robotics [26], and mobile robotics [29].  
Note that it is common to work in a very high-dimensional space in AI, 
machine learning, and data science. Some intuitions we have gained 
from our daily life experience in two or three dimensions may not be 
correct in this very high-dimensional space. Readers interested in 
properties of high-dimensional data may refer to [2]for more detail. 
Principal Component Analysis (PCA) provides such a combination 
method. Indeed, PCA relies on linear combination of these features to 
construct principal subspace that is the main subspace on which most 
of the feature vectors lie. PCA uses variance as a measure of the 
information content of the subspace. The quality of the selected 
subspace can be measured by comparing the variance of data within it 
to the total variance of the whole dataset. These are two keys idea of 
PCA. In practice, however, one may run into practical problems such 
as hav- ing too few observations compared to the data dimension or 
having too much computational cost due to the high dimensionality of 
data and a large number of observations, etc. This paper describes some 
practical algorithms for handling these different scenarios. Some 
material pre- sented hereafter is extended from our previously 
published paper [13]. It should be noted that this tutorial focuses mainly 
on the algorithmic aspect of PCA. Readers interested in its applications 
are invited to consult the paper [7], [1] and references therein to see 
different use-cases of PCA on different domains including 
bioinformatics and quantum computing. 
In the following, Sect. 2 first describes PCA in the usual setting where 
the number of avail- able data points is larger than the dimension of 
feature vectors. Then Sect. 3 describes PCA that is designed for small-
sample-size case.. This section describes a variation of PCA designed 
to handle this case. Section 4 describes another variation of PCA 
designed for large-scale datasets in a very high-dimension space. 
Indeed, current AI and data science datasets are often large with very 
high-dimension feature vectors. This section explains how to mitigate 
the computational cost of PCA in this case.  

2 Classical case: n > d 
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This section describes a classical scenario for applying PCA, namely when 
the number of available data points is larger than the dimension of feature 
vectors. In this section, we assume that the dimension of feature vectors is not 
very large, so all calculations can be done on a modest computer. 

2.1 Notation 

In the following, let z ∈ ℝd denotes a feature vector in d-dimensional space 
with  

⎡ x1 ⎤ 
⎢ x2 ⎥ 

z =    
⋮ ⎢ ⎥ 

⎣ xd ⎦ 

A feature vector contains values of features that are observed on actual data. 
We assume that there are no missing values. We further assume that these 
features are all numerical. 

In theory, the features should be selected adequately by domain experts. 
Nonetheless, in practice, we often rely on low-level features, such as the 
intensity of each pixel in an image, that can be computed easily. High-level 
features, like loops and cusps in hand- written strokes, contain more 
information. However, their detection depends on image processing 
functions that must be put in place first. These functions may contain some 
heuristic or programming bias. As a result, for some poorly scanned images, 
the detec- tion of high-level features may not be done accurately. Low-level 
features, such as pixel intensities, are more robust because they can always be 
extracted from all input images. Even if each low-level feature may not 
convey a meaningful description by itself, com- bining lots of them with 
lots of data makes it possible to derive meaningful meaning using machine 
learning models. PCA is one method to achieve this goal. 

2.2 Linear projection and dot product 

The main idea of PCA is to use variance as a measure of information 
content and to identify linear subspace maximizing the variance. The 
linear subspace can be con- structed from multiple unit vectors that are 
orthogonal to each other. Each unit vec- tor represents a projection axis. 
Consider a projection axis w ∈ ℝd , the projection of 
z ∈ ℝd onto the axis  is the point on this axis that is closest to . This 
projection can 
be computed by ‖w‖ cos ϴz,w . Recall that the “dot product” or the “scalar 
product” or the “inner product” between any two vectors and denotes 
as ⟨u, v⟩ satisfies 
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                                     ⟨u, v⟩ = uT v = ‖u‖‖v‖ cos  ϴu,v. 
                             (1)

In the following, we will use ⟨u, v⟩ or uT v interchangeably when talking 
about dot product. The projection of onto the unit vector axis is then given 
by a simple dot product zT w ∈ ℝ. Note that the “projection” refers to the 
location on the projection axis. The same location can be described relative 
to the input space as well by multiplying it with the projection axis, i.e., (zT 
w)w. This quantity is often referred to as the “reconstruction” of from its 
projection on the axis. 

2.3 Variance on projection axis and covariance matrix 

Given a set of centered real values z1, z2, … , zn zt ∈ ℝ, the variance of 

this dataset is 

                                    Var = 1 , z2.         

 
 
 

n t=1       
                                                                                                                    (2) 

Given a set of feature vectors z1, … , zn, zt ∈ ℝd, and a projection axis 
(that is a unit vector, i.e. ‖w‖ = 1). The projections on are wT z1, … , wT zn. 
Suppose that the feature vectors are centered around zero vectors. Thus, their 
linear projections will also be cen- tered appropriately. Note that each dot 
product yields a simple real value, i.e., wT zt ∈ ℝ. Hence, the Eq. (2) can be 
used to compute the variance: 

1 , 
T 2  (3) 

Var (w)=  
n 

t=1 

(w zt )                                                     (3) 

= 
1 , 

wT z zT w  (4) 

t t 
t=1 

 

 

=wT 
1 

n 

n 
t=1 

 
zt z

T w. 

 
 

(5)

 

Covariance matrix 

The last line gives us a shortcut to compute variance on any axis . Indeed, 
instead of projecting all data onto the axis and then computing the variance, 

t 

n 
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we can pre-compute the covariance matrix C first, then given any projection 
axis  the variance of the projection on is given by wT Cw. 

2.4 PCA problem and Lagrangian  

 
From the above calculation, we can formulate the main idea of PCA as the 
following con- strained optimization problem:

 
 

max 
w 

                                  subject to wT w = 1. 

wT Cw 
                             (6)

 
                                               

For standard optimization problems, we may set the partial derivatives to zero 
and solve the resulting equations or follow the gradient. However, the above 
problem has an addi- tional constraint that must be considered. To this end, the 
standard approach is to use the Lagrangian method (see (Dimitri 1996) for 
more detail on the Lagrangian method). In short, to solve the following 
constrained optimization problem: 
 

max 
z 

                                     subject to g(z)= 0, 

the following Lagrangian function is 
considered: 

f (z) 
(7) 

                                                L(z, ß)= f (z)− ßg(z),                                       (8) 

with ß the Lagrangian coefficient describing the important of the constraint. 
Then, given the solution (z∗, ß∗) optimizing the function L, z∗ will be the solution 
of the initial problem. For the PCA problem, its Lagrangian is given by 

                                   L(w, ß)= wT Cw − ß
 
wT w − 1       (9)                                

 

 

Then, if we compute the partial derivative of L with respect to and 
set it to zero, we obtain: 

                                                 0 =  6L 
                                                         

6w 
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i=1 

                                                       (10)
 

=2Cw − 2ßw (11) 
 

Cw =ßw. (12) 

The above derivation uses matrix calculus. Readers unfamiliar with this 
calculation could consult reference (Petersen and Pedersen 2012) for more 
detail. 

Eq. (10) means that the axis maximizing variance must be an 
eigenvector of C, and ß is its corresponding eigenvalue. The eigenvectors and 
eigenvalues are, in fact, math- ematical objects that have been studied for a very 
long time. PCA represents another appli- cation of this well-founded subject. 
An example of a commonly used method to extract eigenvector and 
eigenvalue pair, or eigen-decomposition algorithm called the Jacobi 
method is shown in Section A. 

 
2.5 Eigenvalue, variance and axis selection 

 
From Sect. 2.4, we have seen that the projection axis maximizing variance 
must be an eigenvector of the covariance matrix C. However, as C is a d × d 
matrix, it has d eigenvec- tors; which one should be selected? To answer this 
question, we can observed that 

                                                 Cvi =ßivi                                       (13) 

 
                                            vT Cvi =ßiv

T vi                                    (14)
                                                                       i i 

 
                                               Var (vi) =ßi.                                        (15)

In other words, the eigenvalue corresponds to the variance of the data projected 
onto its corresponding eigenvector. Given eigenvalues ß1 ≥ ß2 ≥ ... ≥ ßd with 

v1, v2, … , vd the corresponding eigenvectors. From the discussion above, 

we know that if we select only one projection axis, then v1 should be the best 
choice since it corresponds to the largest eigenvalue, thus the largest variance 
of projected data.Note that from these eigenvalues we can easily compute the 

total variance, i.e. 
∑d  ß . I  .This total variance represents the entire information 

content of the dataset. By comparing ß1 to the total variance, we can judge if a 
single projection axis v1 is enough to retain the most information or not. In 
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practice, a single projection axis is not enough. Fortunately, as the eigenvectors 
are already orthogonal, it is possible to select the next “largest” eigen- vectors 
to form the basis of the principal subspace. The next question is how many 
axes should be selected. 
There are three approaches to this question: 
1. User gives the desired number of axis m. 
2. If we assume that p portion of the information content was, in fact, noise, then 

m should 
be the smallest number such that 

∑m ß ≥ p 
∑d ß . 

i=1  i i=1  i 
3. We can also assume that all axis with variance smaller than a pre-defined 

threshold are noise and should be discarded. Thus, we select all axis that 
ßi ≥ εß1 

 

 
 
The PCA algorithm is summarized in Algorithm 1. Given principal axis v1, 
… , vm, each new data point can be represented within the principal 

subspace as: 

⎡ zT v1 ⎤ 
⎢ zT v2 ⎥ ∈ ℝm, (16) 
⎢  ⋮  ⎥ ⎢  T ⎥ 

⎣ z vm ⎦ 

and the reconstruction from its projection on the principal subspace is given 
by 

ẑ = 
,

(zT vi)vi 
                                                           i= 1                                            (17)    

 

 

It is pretty straightforward to prove that the selected principal subspace also 

minimizes the reconstruction error 
∑

‖z − ẑ ‖2 and that the reconstruction error  

is indeed the sum of all eigenvalues outside the principal subspace. 
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3 Small‑sample‑size case: n ≤ d 

This section describes the PCA method designed for the case where the 
number of data points (n) is smaller than the dimension of feature vectors 
(d). Even if the method described in this section originated from image 
application, it could also be used with general feature vectors when n ≤ d . 
This scenario appears, for example, in bioinformat- ics [7]. In [7], the author 
studied 8,534 probes on the microar- rays with expression measurements 
extracted from 105 samples. In other words, the authors consider a dataset 
of 105 feature vectors in 8,534 dimensions. This dataset can be processed 
using the PCA algorithm described in this section. 

In the following, Sects. 3.1 and 3.2 discuss the dot matrix, its relation to 
the covari- ance matrix, and the conversion of eigenvectors obtained from 
both matrices. The use of the dot matrix is the foundation of the small-
sample-size PCA method described in Sect. 3.3. 

3.1 Covariance matrix and Dot matrix 

 
Given feature vectors z1, … , zn with zt ∈ ℝd . We assume that these 
vectors are cen- tered around zero. We can construct a data matrix X = 
[z1, … , zn] of size d × n. The column i of X corresponds to the feature 
vector zi . Using this data matrix, the covari- 
ance matrix can be rewritten as 

                              C = 1 , z zT = 1 XXT .   
                     (18)          

t t 
                                             t=1 

We often use XXT to denote the covariance matrix since maximizing wT Cw 
or wT XXT w will result in the same eigenvectors (if we constraint these 
eigenvectors to be unit vectors). The dot matrix is defined as XT X. It is easy 
to see that the element i, j of this matrix is indeed the dot product between 
example i and j, i.e. zT zj. 

3.2 Eigenvector conversions 

Suppose that ß and are eigenvalue and corresponding eigenvector of dot 
matrix, then we have 

XT Xv =ßv (19) 

(XXT )(Xv) =ß(Xv). (20) 

Hence Xv will be an eigenvector of the covariance matrix under the same 
eigenvalue ß. This relation allows us to convert the dot matrix’s eigenvectors 
into the covariance matrix’s eigenvectors. After the conversion, the newly 

n n 
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obtained eigenvector should be normalized as usual. Note that we have 

vTXTXv = ß. 

Hence the normalized version of the eigenvector is simply 

(1∕
√

ß)Xv 

(21) 

On the other hand, it is also possible to convert eigenvectors of the 
covariance matrix into eigenvectors of the dot matrix. Indeed, if ß and are 
eigenvalue and cor- responding eigenvector of dot matrix, then we have 

XXT u =ßu (22) 

(XT X)(XT u) =ß(XT u). (23) 

Hence XT u will be an eigenvector of the dot matrix under the same eigenvalue 
ß. To nor- malize this eigenvector, we have 

 

                                                uT XXT u = ß.        (24)

 

Hence the normalized version of the eigenvector is  

                                                      1∕
√

ß)XT u 
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3.3 PCA from dot matrix 

 
From the above discussion, the small-sample-size PCA can be done by eigen-decompose the dot matrix first, then 
converting the result into eigenvectors of the covariance matrix. The whole procedure is summarized in Algorithm 
2. From the computational point of view, the rule of thumb is to eigen-decompose a smaller matrix. If d ≤ n, 
then we should eigen-decompose the dot matrix, if d > n we eigen-decompose the covariance matrix. 
 
4 Large‑scale dataset in high‑dimensional space: large n and large d 

As time goes by, the size of  dataset increases from a few hundred data to more than ten thousand data. 
Consequently, both covariance matrix and dot matrix will be huge and become difficult to eigen-decompose. 
This section describes how to deal with this problem, starting from a simple heuristic designed for data 
(Sect. 4.1), then we discuss why it works (Sect. 4.2) before giving a general method to handle this case in 
Sect. 4.4. 

4.1 Approximate PCA 
In summary, the PCA for large-scale data in high dimensional space can be done by adapt- ing the Algorithm 3 using 
dot product preserving transformation instead of simple down- sizing. This approximate PCA algorithm is 
summarized in Algorithm 4  

 
 
5. Datasets Used in Experiments 

All simulations were executed against the credit card fraud dataset, which is freely available on the Kaggle 
repository via the following link: https://www.kaggle.com/ datasets/mlg-ulb/creditcardfraud, accessed on 
20 May 2022. This dataset consists of trans- actions generated by credit cards in Europe in September 2013 
during the time span of two days. The dataset represents a binary classification challenge composed of 
only two target variables (classes)—the positive class, which denotes fraudulent transactions and the 
negative class that represents regular transactions. Moreover, the dataset is extremely asym- metrical 
(imbalanced) containing only 492 fraud instances out of 284,807 total transactions. Therefore, the positive 
class (frauds) represent only 0.172% of the dataset. 
In the experiments, the original credit card fraud dataset, as it is hosted on the Kaggle, is used, and the goal 
of these experiments was to establish how Principal Component Analysis (PCA) is one of the most widely used 
data analysis methods in machine learning and AI perform on highly imbalanced data. Analyze the distribution 
of transaction amounts. Here’s a quick look at transaction amounts in Table-1 : And here’s what the 
distribution looks like on a log-scale histogram (makes the long right-tail easier to see) in Fig-1. 
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                 Table1Transaction amounts 
 
 

 
 

Fig-1. Distribution of transaction amount 
 

 
 
PCA COMPONENT MATRIX 
 

 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 

V1 -0.17 0.0 -0.01 0.0 0.07 -0.06 -0.0 0.0 -0.0 

V2 -0.39 -0.02 0.07 0.03 -0.11 0.05 -0.09 0.05 -0.05 

V3 -0.16 0.01 -0.05 -0.04 0.18 -0.04 0.05 0.02 -0.09 

V4 0.07 -0.01 0.08 0.06 -0.07 0.14 0.06 0.55 -0.16 

V5 -0.29 0.01 -0.01 -0.04 0.0 -0.2 0.02 -0.37 0.08 

 
Table-2 PCA component matrix(First 10 PC,s) 

Amount 

count 284807 

mean 88.35 

Std 250.12 

Min 0 

25% 5.6 

50% 22 

75% 77.165 

max 25691 
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Fig-2 PCA component matrix(First 10 PC,s) 

 
In the component matrix and heat-map Rows show the original variables (V1 … V28 + Amount) and Columns show  principal 
components. The  Cell value (“loading”) show weight of that original variable in the PC; red ≈ positive influence, blue ≈ negative, white 
≈ near-zero. 
According to Fig-2 Key patterns you can see  PC 1 is still driven primarily by Amount (strong red at bottom) and a few V-features with 
opposite sign (blue), PC 2 is essentially the V12 vs V13 axis (deep red vs deep blue) and PCs 3-5 pick up correlated trios such as V18 
/ V17 / V16 and V21-V22 vs V25-27. 

PRINCIPAL COMPONENT ANALYSIS  

Table 3 PCA (First 5 PC,s) 

 PC1 PC2 PC3 PC4 PC5 

0 0.32370619572924497 0.25760488429210215 0.1945962954162684 0.06520773269880602 -0.47145922724151607 

1 -0.47241623299580704 0.37868444929586076 -0.08481031515298265 -0.7398582264872989 -0.5009336420954141 

2 1.7749788367879362 -0.35090920943032783 1.1952307428961457 1.17197540661077 -0.2772711314917756 

3 0.24528273714878746 -0.25334583239440733 2.623574972166434 -0.5217077322203234 0.979751884846719 

4 -0.06587600522721089 -0.491490688243078 0.08834703992258976 0.4914890724434351 0.11230087326255553 
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Fig. 3 Cumulative Explained Variance by PCA Components 

 
Here’s what the PCA tells us: The curve rises almost line-by-line; there isn’t one or two dominant components. 
The  Rough guide-posts: ~10 components give you ~40 % of the total variance , ~20 components reach ~70 % and You need most of 
the 29 components to get above 95 %. So dimensionality can be trimmed, but not drastically—information is fairly spread out.The tiny 
table shows the first five new axes (PC1-PC5) for a handful of transactions; they’re simply the original V-features + Amount re-
expressed in an orthogonal space. Next steps could be: 1. Decide a variance target (e.g., keep 15 PCs) and create a reduced dataset and 
Visualize fraud vs. non-fraud in PC1–PC2 space to see if separation is visible. Feed the reduced features into a classifier to check 
speed/accuracy trade-offs. 

Identify top features contributing to PCs 

 PC1 PC2 PC3 PC4 PC5 

Amount 0.7071067811865479 nan nan nan nan 

V7 0.29330648665816017 0.03120686439734889 nan nan nan 

V20 0.2505572472114237 nan nan nan nan 

V2 -0.39230119438433814 nan nan nan nan 

V5 -0.2852191777998456 nan nan nan nan 

V1 -0.16810100452217872 nan nan nan nan 

V12 nan 0.7132337220839206 nan nan nan 

V10 nan 0.03957882238473481 nan 0.12673595344860233 nan 

V13 nan -0.6897240761250465 nan nan nan 

 
Table 4 Top Features contributing to PC,s 

In the table 4 Columns show  principal components 1-5 and Rows  show the  original variables with the largest positive (top) and 
negative (bottom) loadings for each PC (only the strongest three in either direction are shown). The numbers are the coefficients in the 
linear combination; higher magnitude ⇒ stronger influence. 
Highlights PC 1 (“transaction size” axis) , Amount, V7, V20 push scores upward and V2, V5, V1 push them downward. 
Interpretation: the first component contrasts raw Amount (and a couple of related anonymised features) against several V-features; large 
positive PC1 ≈ big purchases , PC 2 (“time-shift vs. profile” axis) and  V12 dominates the positive side while V13 dominates the 
negative, giving a strong one-dimensional contrast between those two latent features. 
PC 3 (“balance-oscillation” axis) V18 drives positive values, while V17 and V16 drive negatives; this pair of correlated features is being 
teased apart. PC 4 (“V21/V22 against V25-27 cluster”) Positive: V21 and V22 and Negative: V25, V27, V26. PC 5 (“high-frequency 
tail”), Positive: V28, V9, V14 and  Negative: V15 and V25. 
Next steps you might consider keep the top n PCs and visualise fraud-vs-legit separation, Use these loadings to understand which 
engineered features matter most for a model. Rotate or varimax-spin the components for even clearer interpretation.  

Compare PCA results before and after scaling 

 PC Unscaled_Var% Scaled_Var% 

0 1 99.95 6.75 

1 2 0.01 3.45 

2 3 0.0 3.45 

3 4 0.0 3.45 

4 5 0.0 3.45 

5 6 0.0 3.45 

Table 5 PCA results before and after scaling 
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Fig 4 PCA results before and after scaling 

In fig 4 Un-scaled PCA,  The raw Amount column dominates the variance (≈ 100 % in PC1),Every other component explains almost 
nothing and Result: one “size” axis, little insight elsewhere. Scaled PCA, Standardising evens the playing field, so each V-feature can 
contribute  and Variance is now spread more evenly (≈ 6-7 % per component). • You need ~15 PCs to reach 60 % cumulative variance, 
but you gain a multidimensional signal instead of a single “big transaction” axis. 

PCA SCORES 

 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 

0 0.323706195
72924497 

0.257604884
29210215 

0.194596295
4162684 

0.065207732
69880602 

-
0.471459227
24151607 

-
0.112166891
37467226 

0.5432992523
095345 

0.5669331587
819579 

-
0.287660433
3919832 

1 -
0.472416232
99580704 

0.378684449
29586076 

-
0.084810315
15298265 

-
0.739858226
4872989 

-
0.500933642
0954141 

-
0.628500815
781507 

0.8352779025
554086 

0.0770169615
8938355 

0.198725822
99677097 

2 1.774978836
7879362 

-
0.350909209
43032783 

1.195230742
8961457 

1.171975406
61077 

-
0.277271131
4917756 

-
2.288464091
905241 

1.4962474013
655271 

-
0.9753214864
934595 

0.088576306
5388899 

3 0.245282737
14878746 

-
.2533458323
9440733 

2.623574972
166434 

-
0.521707732
2203234 

0.979751884
846719 

-
0.582742707
7774181 

0.0365870954
99876425 

-
1.2163698879
0352 

-
0.833910754
1567488 

4 -
0.065876005
22721089 

-
0.491490688
243078 

0.088347039
92258976 

0.491489072
4434351 

0.112300873
26255553 

0.869271282
9027893 

-
0.0847234816
2334035 

-
0.0456731005
36470196 

-
0.875938989
1195877 

 
Table 6 PCA Scores 

 

 
Fig 5 PCA Score PC1 vs PC2 

 
 
These are the PCA scores—each row is a transaction, and each “PC k” column is that transaction’s coordinate on the k-th principal 
component (after scaling all features). I kept enough PCs to capture ~95 % of the variance (27 components here). The scatter-plot shows 
the first two scores, with fraud cases in red. You can already see good separation along PC 1 / PC 2. 
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Visualize PC scores distribution 

 
Fig 6  PC Score distibution 

 
 
Here’s how the first four principal-component scores are distributed for legitimate (blue) vs. fraud (red) transactions: 
PC 1 Mostly separates records by overall transaction size—both classes are tightly centered near zero except for a handful of very 
large legitimate transactions (the long right-hand tail).  PC 2 Shows clear class separation: fraud cases cluster around 0, while 
legitimate ones are shifted left. This mirrors the strong V12-V13 contrast we saw in the loading matrix.  PC 3 Again the two groups 
occupy distinct ranges, with fraud concentrated in a narrow negative band and legitimate transactions spreading out toward positive 
values.  PC 4 Distributions still differ, though overlap starts to increase. PCs beyond this point add finer-grained contrasts. 
Overall, PCs 2–4 already provide useful univariate discrimination, which is why a simple scatter of PC 1 vs PC 2 showed the red points 
standing apart. 
 

PCA SCREEN PLOAT 

 
Fig 7 PCA Screen plot 

 
Above is the PCA scree plot:  Blue circles  show  individual-component variance,  No single PC dominates; each explains < 5 % of the 
total,  and  Orange squares  show cumulative variance. It climbs roughly linearly, crossing 70 % at ~20 PCs and 95 % at 27 PCs (the 
cut-off we used for the scores). 
Interpretation, Because variance is so evenly spread, dimensionality reduction is feasible but you need quite a few components to retain 
most information. In practice, keeping the top 15–20 PCs already preserves the bulk of the structure while slashing dimensionality from 
29 variables to a more tractable size. 
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PCA BIPLOT 

 
Fig 8 PCA Biplot 

 
The biplot overlays two things on the PC1–PC2 scatter: Scores (points)  Blue show  legitimate, Red show fraud. Fraud points hug the 
negative‐PC1 axis, confirming the separation we saw earlier. Loadings (black arrows),  The arrows show which original variables 
influence each PC direction. For example, V12 points upward along PC2, while V17 and V10 lean left along PC1—so transactions with 
extreme V17/V10 values drive large negative PC1 scores (where fraud clusters). 

In short: PC1 is mainly a contrast driven by V17, V10, and related features, while PC2 is steered by V12. 
Together they set apart the fraud region (lower-left quadrant) from the bulk of normal transaction. 

 PC1 PC2 PC3 PC4 PC5 

V1 -0.23521185934521036 0.004095075197121527 -0.008747471628066225 6.131379507616363e-16 0.07412517733349201 

V2 -0.5489193453469995 -0.015285882453687814 0.07437535894161647 0.025517664454767837 -0.10569209230380334 

V3 -0.21782917801302595 0.011620736796068386 -0.04719114101977063 -0.03799514382749516 0.1811685508407297 

V4 0.10198496417164304 -0.012977055284778084 0.08417871900865681 0.06122505271950301 -0.06590051417337967 

V5 -0.39908704485084034 0.01289403968507728 -0.01117156713632699 -0.04497507310849639 0.0009110923604312544 

V6 0.22309795579736147 0.016228499275178384 -0.017258649062433663 -0.043054472738186335 0.11616948661229475 

V7 0.41040304477046036 0.031206864397348898 -0.04686653912235015 -0.04872927320186026 0.032650883550410965 

V8 -0.10647564523839272 0.010299862783005554 0.004098800425593699 -0.0075881634982455275 -0.09365247702167853 

V9 -0.045703534636656065 -0.07761854036476451 0.012206684029195315 -0.0482745762212936 0.3108981801692219 

Table 7 Correlation Between Original and PCA Components 

 
Fig 9 Correlation between original and PCA component 
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The tiny table gives a numeric glimpse—here you see how each of the first five PCs correlates with the first ten original (scaled) features. 
The full heat-map then expands that view to the first ten PCs versus every original variable:  Bright red / blue indicates strong positive 
/ negative correlation.  PC 1 is dominated by the Amount feature (deep red at bottom) plus negative ties to variables like V2, V5.   PC 
2 swings strongly with V12 and against V13, matching what we saw in the loading plot. • Later PCs (PC 4–PC 7) pick up more targeted 
patterns—e.g., V15 for PC 6, V18 for PC 3—showing that information is dispersed rather than concentrated in one or two axes. These 
correlations help interpret PCs: if a model uses (say) PC 2 heavily, we now know it’s effectively leveraging the V12 ↔ V13 contrast. 
Let me know if you’d like deeper dives—e.g., exact coefficients for all 29 PCs or zooming into any particular variable. 
 

6. Conclusions 

For years, researchers have been interested in credit card fraud detection, and it will continue to be an attractive topic 
of research in the future. This is primarily due to the fact that fraud tendencies are always changing. In this study, we 
reviewed the classical PCA method and the problem that may arise when applying it to very small or very large high-
dimensional datasets. We have also dis- cussed different methods that may be used to handle these cases. We have shown 
that a good PCA approximation could be achieved.  
The dataset is composed of 30 numerical features, where attributes v1, v2, . . . v28 are obtained by applying the 
principal component analysis (PCA), while v29 and v30, which represent time and amount, respectively, were not 
transformed with the PCA. The time refers to the number of seconds elapsed between the first and each other 
transaction in the dataset, while the amount is the value of every transaction.  
This work gives the technique for credit card fraud analysis depending on the PCA. PCA is used for extracting 
multiple features at a time from real-world datasets. Each PC represents an optimized value of the original attribute. 
Experimental results show efficient analysis of associated attribute relation. Furthermore, the proposed approach 
shows an optimized cluster representation effectively. This work gives the technique for credit card fraud analysis 
depending on the PCA. PCA is used for extracting multiple features at a time from real-world datasets. Each PC 
represents an optimized value of the original attribute. Experimental results show efficient analysis of associated 
attribute relation. Furthermore, the proposed approach shows an optimized cluster representation effectively 
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