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Abstract - In response to the growing concerns 

regarding the spread of deepfake media generated by 
advanced deep learning techniques, ensuring digital 
content authenticity has become a critical challenge. 

Existing detection systems often depend solely on 
either spatial or temporal features, resulting in 

limited accuracy, poor generalization to unseen data, 
and difficulty in real-time application. To address 

these shortcomings, this study proposes a hybrid 
deepfake face detection framework that combines 
Local Binary Patterns (LBP) and Convolutional 

Neural Networks (CNNs). LBP captures fine-grained 
texture inconsistencies, whereas CNNs extract deep 

spatial features, thereby enhancing the detection 
performance. The system was deployed using a 
Flask-based web interface for real-time analysis and 

visualization. When trained on benchmark datasets 
such as FaceForensics++, DFDC, and Celeb-DF, the 

model achieves high accuracy, robustness, and 
generalizability. This approach offers a more reliable 
and efficient solution for safeguarding the integrity 

of digital media. 

Keywords - Deepfake detection, Local Binary 
Pattern (LBP), Convolutional Neural Networks 

(CNN), Flask, FaceForensics++, digital forensics. 

I.   INTRODUCTION 

Deepfake technologies have rapidly evolved into a 
major concern regarding digital media authenticity. 

Utilizing advanced deep learning techniques, such as 
Generative Adversarial Networks (GANs), malicious 

actors can create highly convincing fake images and 
videos, especially of human faces. These synthetic 
media challenge the credibility of digital content and 

have serious implications in domains such as politics, 
journalism, cybersecurity, and social media. As these 

technologies become more accessible, the risk of 
misinformation and identify manipulation continues to 
grow 

Existing deepfake detection systems primarily rely on 
deep learning models that extract spatial and temporal 
features. While effective in controlled environments, 

they face key limitations, such as poor generalization to 
novel deepfake techniques, sensitivity to image and 

video compression, and high computational 
requirements. Many of these systems are also not 
accessible for real-time use or lack a user-friendly 

interface, making them impractical for widespread 

forensic or public applications. To overcome these 

challenges, this study presents a hybrid deepfake 
detection framework that combines the strengths of 
Local Binary Patterns (LBP) and Convolutional Neural 

Networks (CNNs). LBP captures micro-texture 
inconsistencies that often go undetected by standard 

CNNs, whereas CNNs extract deep spatial features to 
effectively distinguish real content from manipulated 

content. The integration of these two techniques 
enhances the detection accuracy and robustness against 
diverse deepfake generation methods. 

The system was deployed through a Flask-based web 

interface, enabling real-time face image input, analysis, 
and result visualization. Users can effortlessly upload 

facial images and receive immediate feedback on 
whether the content is real or manipulated, making the 
tool highly practical for applications in digital forensics, 

law enforcement, media verification, and cybersecurity 
investigations. The intuitive interface ensures usability 

for both technical and non-technical users, increasing  
accessibility across various sectors. 

Trained on large-scale datasets such as 

FaceForensics++, DFDC, and Celeb-DF, the model 
ensures high precision and robustness across varying 
conditions, including lighting, orientation, and 

compression. By combining LBP for micro-texture 
analysis with CNNs for spatial feature extraction, subtle 

deepfakes can be effectively detected. Its lightweight 
architecture supports deployment on standard hardware 

and integration into forensic and public platforms. The 
system also allows continuous learning, ensuring 
adaptability to emerging deepfake techniques and 

promoting a trustworthy digital media environment. 

I. Objectives 

A robust deepfake detection system is presented, which 
combines Convolutional Neural Networks (CNNs) and 

Local Binary Patterns (LBP) to extract spatial and 
texture features from facial images. Integrated into a 

Flask-based web interface, it enables real-time and user-
friendly verification. Trained on diverse benchmark 
datasets, the model ensures high accuracy, scalability, 

and generalization across various deepfake techniques. 

II. Scope 

This system focuses on classifying individual facial 
images, emphasizing the high accuracy detection of 

various manipulation techniques. Designed for 
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adaptability, it is well suited for real-world applications 

such as journalism verification, forensic analysis, and 
content moderation platforms. 

II.   LITERATURE REVIEW 

In recent years, a wide range of methods have been 

proposed for detecting deepfakes, focusing on spatial, 
temporal, and frequency-based inconsistencies 

introduced during manipulation. Key approaches 
include : 

[1] The study "Face X-ray for Deepfake Detection" used 

a two-stream ResNet-based model to identify 
manipulated regions in facial images. Although 
effective on known data, it showed poor generalization 

to deepfakes from unseen techniques or datasets.  [2] 
"MesoNet" introduced a lightweight CNN model 

targeting low-level inconsistencies in facial videos. 
Despite its efficiency, it struggles with high-quality, 

compressed videos and often misses subtle deepfakes. 

[3] "Exposing Deep Fakes Using Inconsistent Head 
Poses" relied on facial landmarks and geometric 
analyses. While effective for unnatural poses, its 

accuracy decreases when deepfakes use corrected poses 
or stable angles. [4] "Detecting Deepfake Videos Using 

Biological Signals" leveraged PPG signals to spot heart 
rate inconsistencies. However, it requires high-
resolution input and fails under low light, noise, or 

compression, which are common on social platforms.  

[5] The paper "Multi-task Learning for Deepfake 
Detection via AudioVisual Inconsistencies" presented a 

method that jointly analyzed lipsync errors and visual 
cues using a multi-modal approach. Although effective 

in detecting audio-visual mismatches, it cannot be 
applied to images or silent videos, and its performance 
degrades in cases where audio is absent or intentionally 

well-synchronized. The proposed hybrid deepfake 
detection framework overcomes these limitations by 

integrating Local Binary Patterns (LBP) to capture 
subtle texture inconsistencies and Convolutional Neural 
Networks (CNNs) for deep spatial feature extraction. 

Unlike single-modality or shallow-feature methods, this 
system is robust across various resolutions, compression 

levels, and manipulation types. Additionally, the 
realtime, Flask-based interface ensures usability and 

accessibility, making it suitable for practical deployment 
in diverse digital forensic scenarios. 

III.   SYSTEM ARCHITECTURE  

The architecture of the proposed deepfake detection 

system comprises a modular, layered design that ensures 
both functional robustness and operational efficiency. 
The system was developed to facilitate high-

performance image classification and real-time user 
interaction while preserving data privacy and integrity 

through localized processing and a secure architecture. 

A. Core Architectural Layers: 

1. Preprocessing Module: 

Before any analysis, all input images underwent a 
standardized preprocessing stage to enhance the quality 
and consistency of feature extraction. This module 

begins with face detection, utilizing established 
algorithms such as Haar Cascades or Dlib to accurately 

localize and crop facial regions from the input image. 
Once detected, the faces were aligned to a canonical 
orientation, which ensured consistency across the 

dataset and improved the robustness of the subsequent 
layers. This is followed by normalization, where the 

pixel intensity values are scaled, and the images are 
resized to a fixed resolution, making them compatible 

with the input specifications of the neural network. To 
promote generalization and reduce overfitting during 
training, data augmentation techniques, such as 

brightness variation, rotation, and flipping, may be 
applied. 

2. Feature Extraction Unit: 

This unit is responsible for extracting both spatial and 

texture-based features from facial regions using a dual-
pathway approach. The first pathway involves the Local 

Binary Pattern (LBP) module, which captures local 
texture descriptors by thresholding the neighboring 
pixels. This results in an efficient encoding of micro-

patterns, often indicative of synthetic content, such as 
uniform textures or unnatural transitions. 

Simultaneously, the second pathway employs 
Convolutional Neural Network (CNN) layers to 
hierarchically extract spatial features through the 

application of learnable filters and pooling operations. 
These layers are particularly adept at identifying 

deepfake-specific anomalies, such as blending 
inconsistencies and unnatural facial textures. The 

outputs from both the LBP and CNN pathways were 
then concatenated or fused to form a comprehensive 
feature representation, which was forwarded to the 

classification layer. 

3. Classification Layer: 

The classification layer serves as the decision-making 
engine for the system. The concatenated feature map 

from the previous unit is first flattened and passed 
through one or more fully connected layers, which distill 

high-dimensional features into a compact 
representation. The final classification is performed 
using an output activation layer sigmoid for binary 

classification (real vs. fake) or SoftMax for potential 
multi-class extension. This layer generates a probability 

score that indicates the likelihood that the input face is 
authentic or synthetically generated. 

4. Web Interface Layer (Flask Framework) 

To provide accessibility and real-time interaction, the 

trained model was deployed through a user-friendly web 
interface developed using the Flask micro-framework. 
This interface allows users to upload facial images via a 

Journal of Informetrics(ISSN 1875-5879) Volume 19 Issue 3

Page No : 2



web browser and receive instant classification results, 

including the prediction and confidence score. 
Optionally, techniques such as Grad-CAM or attention 

visualization may be used to render localized heatmaps, 
offering insights into the regions that most influenced 

the model’s decision. Flask handles HTTP requests, 
routes inputs to the backend model, and returns results 
efficiently, enabling a seamless and interactive user 

experience. 

 

 

 

 

 

          Figure 1:  Input Stage: Facial Image Selection 

B. Security and Data Integrity 

To protect user privacy, maintain trust, and ensure 
system resilience against misuse, several security and 

data integrity measures are embedded in the system 
design. 

1. Access Control: 

The system integrates authentication mechanisms to 

ensure that only authorized and registered users can 
interact with the model. For institutional or forensic 

deployments, these controls can be extended with role-
based access control (RBAC), which provides granular 

privileges based on user roles. 

2. Local Image Processing 

In the interest of privacy, all uploaded images are 
processed in memory during the user session and are not 

persisted on the server or stored in any database. This 
ensures that sensitive biometric data are not retained 
after classification and that users maintain full control 

over their media inputs. 

3. Data Anonymity 

The system is designed to operate independently of any 
personally identifiable information (PII). Uploaded 

images are not linked to any user data, ensuring 
compliance with data protection standards, such as the 

General Data Protection Regulation (GDPR). 

4. Tamper-Resistant Operation 

The system integrity is preserved through a read-only 
operational mode during inference. No modifications to 

the user data or model were made during the runtime. 
Although logs may be maintained for debugging 
purposes, they are explicitly designed to exclude any 

user media. For future versions, cryptographic hash 
verification can be employed to ensure the integrity of 

the model and code. 

 

 

                  Figure 2: System Architecture 

5.  Scalability and Modularity 

The entire system architecture is modular and scalable, 
allowing individual components such as the CNN 
backbone, preprocessing pipeline, or web interface to be 

upgraded or replaced without disrupting the system’s 
functionality. This ensures adaptability to emerging 

threats, new deepfake techniques, and evolving 
detection algorithms. 

 

S 

 

 

 

 

 

  Figure 3:  System Architecture of Deep Fake Face Detection 

IV. PROPOSED METHODOLOGY 

The proposed system presents a hybrid image-based 
approach for detecting deepfake facial forgeries by 

leveraging the strengths of Local Binary Patterns 
(LBP) for texture encoding and Convolutional Neural 

Networks (CNNs) for hierarchical feature learning. The 
core objective of this methodology is to extract both 

low-level and high-level visual inconsistencies 
commonly introduced during face synthesis using deep 
learning methods such as GANs. The system was 

designed for static image analysis and deployed via a 
lightweight Flask-based web interface for practical 

usability. 
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The methodology is divided into several key 

components: 

A. Local Binary Pattern (LBP) 

The Local Binary Pattern (LBP) is a widely used textue 
descriptor that effectively captures local structural 

information within an image. It operates by comparing 
the intensity of each pixel with that of its surrounding 

neighbors within a defined radius. Based on these 
comparisons, binary values are assigned typically ‘1’ if 

a neighbor’s intensity is greater than or equal to the 
central pixel, and ‘0’ otherwise. The resulting binary 
patterns are then transformed into decimal 

representations, forming a compact yet powerful 
encoding of the local texture. These descriptors are 

particularly useful for identifying fine-grained 
variations, such as irregular textures, unnatural edges, 
and noise, which are often indicative of tampering or 

image manipulation.        

            

 

      Figure 4:  Local Binary Pattern Architecture 

In the proposed deepfake detection system, the LBP 

operator is applied to grayscale facial images after the 
alignment and normalization stages during 

preprocessing. This ensures consistency in the input and 
maximizes the reliability of the extracted texture 
features. The resulting LBP codes were aggregated into 

histograms that served as interpretable and 
discriminative texture descriptors. These histograms 

were then used as inputs to the classification module, 
either individually or in conjunction with the CNN-
derived spatial features. Notably, the LBP enhances the 

system’s sensitivity to pixel-level anomalies, especially 
in critical facial regions, such as the eyes, mouth, and 

skin areas, which deepfake generation algorithms 
frequently fail to synthesize accurately. Thus, the LBP 
significantly contributes to the system’s ability to detect 

subtle artifacts and improves the overall classification 
performance. 

B. Convolutional Neural Networks (CNNs) 

Convolutional Neural Networks (CNNs) are integral to 

the proposed system for learning complex spatial 
features from facial images in a supervised learning 

framework. The CNN architecture was designed to 
hierarchically extract visual representations that 

highlight both low- and high-level attributes relevant to 
deepfake detection. The network begins with multiple 

convolutional layers that apply learnable filters to the 

input image to detect fundamental visual elements, such 
as edges, corners, and textures. This is followed by 

pooling layers, which progressively reduce the spatial 
resolution while preserving the most salient features, 

thereby improving the computational efficiency and 
reducing the risk of overfitting. 

 

Figure 5:  Convolutional Neural Network (CNN) 

To further enhance the model’s robustness and 
generalization capability, dropout layers were 

incorporated to prevent the coadaptation of neurons, 
whereas batch normalization layers stabilized and 

accelerated the training process by normalizing the 
output of the preceding layers. The final fully connected 

layers act as a high-level classifier, integrating the 
extracted spatial features to perform binary 
classification and distinguishing between real and fake 

faces.  

This CNN-based feature extraction process 
complements the Local Binary Pattern (LBP) module by 

focusing on global and abstract features, such as facial 
symmetry distortions, unnatural blending artifacts, and 
inconsistencies in lighting characteristics, which are 

commonly present in synthetically generated images. 
Together, the CNN and LBP components provide a 

robust dual-stream architecture capable of capturing 
both localized texture anomalies and broader structural 

inconsistencies for effective deepfake detection. 

C. Feature Fusion and Classification Process 

To enhance the discriminative power of the proposed 
deepfake detection system, features extracted from the 

Local Binary Pattern (LBP) and Convolutional Neural 
Network (CNN) modules are fused at the feature level. 
This fusion is typically achieved through concatenation 

or ensemble-based logic, enabling the integration of 
both fine-grained texture descriptors and high-level 

semantic spatial features. By combining the strengths of 
both local and global feature representations, the system 
can detect a wide range of deepfake artifacts, from subtle 

pixel-level inconsistencies to broader structural 
anomalies. 

This hybrid feature representation is then passed to the 

classification head, which consists of fully connected 
layers culminating in a sigmoid-activated output layer 
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for binary classification purposes. The sigmoid function 

outputs a probability score that quantifies the likelihood 
of a face being fake. A predefined decision threshold 

was applied to this probability to determine the final 
classification label. Importantly, this threshold can be 

fine-tuned depending on the deployment context; for 
instance, can be optimizeding for higher recall in 
forensic investigations where a deepfake is critical, or 

higher precision in real-time applications to reduce false 
alarms. This flexible classification framework 

contributes significantly to the overall robustness and 
adaptability of the system across diverse use cases and 
data sets. 

D. Dataset Overview 

The dataset used for training and evaluating the 
proposed system consisted of over 18,000 high-quality 
facial images extracted from benchmark deepfake 

datasets, such as FaceForensics++, DFDC, and Celeb-
DF. These images encompass a diverse range of genuine 

and manipulated faces, covering various ages, 
ethnicities, lighting conditions, facial expressions, and 
image qualities.  

By utilizing a large volume of individual images rather 
than entire videos, the system focuses on extracting 
detailed spatial and texturebased features from each 

frame. This approach allows for the precise analysis of 
subtle local texture inconsistencies, captured effectively 

by Local Binary Patterns (LBP), alongside deep spatial 
features extracted by Convolutional Neural Networks 
(CNNs). 

The extensive size and diversity of the dataset ensured 
that the model generalized well across different 
deepfake generation methods and real-world variations, 

improving its robustness against compression artifacts, 
noise, and various manipulation styles. This image-

based training strategy supports efficient real-time 
detection while maintaining high accuracy and 
reliability in identifying deepfake facial content.

 

Figure 6: EfficientNet Architecture 

E. Web Deployment Using Flask 

To bridge the gap between research and real-world 

usability, the proposed deepfake detection system was 
deployed through a webbased interface utilizing Flask, 

a lightweight Python micro web framework. This 
deployment enables interactive and user-friendly access 
to the detection capabilities of the underlying model. 

The web interface facilitates image upload functionality, 

allowing users to submit facial images directly through 

a browser. Once an image is uploaded, the system 
performs real-time classification, typically within 1–2 s, 

providing immediate feedback on the authenticity of the 
face. The interface prominently displays the 

classification result, indicating whether the input face is 
real or fake, along with a confidence score (e.g., 91.3% 
confidence fake), enhancing the transparency and 

interpretability of the model’s output. For added security 
and data privacy, all uploaded images are handled in 

memory and are not stored on disk or retained post-
processing, ensuring session isolation and safeguarding 
sensitive biometric information 

 

 

 

 

 

     

         Figure 7:  Input Stage: Facial Image Selection. 

The lightweight and modular nature of the Flask 
framework ensures seamless integration with the 

backend model and supports flexible deployment across 
various platforms, including local systems, cloud-based 

environments, and edge devices. This implementation 
demonstrates the practicality, responsiveness, and 

adaptability of the system for real-time applications in 
forensic, institutional, and consumer-facing settings. 

V.   IMPLEMENTATION AND RESULTS 

The implementation of the proposed deepfake detection 

system involved the careful integration of preprocessing 
techniques, model training, dataset preparation, and 
interface deployment. The goal was to create a 

lightweight, high-accuracy solution capable of 
efficiently detecting manipulated facial images 

efficiently in real time.  

A. Datasets  

The proposed deepfake detection system was 
implemented using three benchmark datasets, each 

chosen for its unique contribution to the system's 
robustness and generalization. The FaceForensics++ 
dataset served as the primary source for extracting both 

real and forged facial images from compressed video 
samples. This dataset is particularly useful because of its 

inclusion of multiple forgery techniques, such as Face 
Swap and Deep Fakes, under controlled yet varied 
scenarios. To introduce broader diversity, the Deep Fake 

Detection Challenge (DFDC) dataset created by 
Facebook AI was utilized. It provided high-resolution 

facial images spanning different demographic groups, 
lighting conditions, backgrounds, and facial poses, 
enabling the model to generalize beyond narrow data 
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distributions. The third dataset, Celeb-DF (v2), contains 

high-quality manipulated images with minimal visual 
artifacts. This dataset was instrumental in assessing the 

model's ability to detect subtle manipulations and verify 
its robustness against sophisticated deepfakes. Notably, 

all datasets were processed to extract static facial images 
for classification, explicitly excluding video-based 
temporal information. 

B. Preprocessing Pipeline 

A consistent preprocessing pipeline was applied across 
all datasets to ensure high-quality and uniform input 
data. The images were first extracted and resized to 

224×224 pixels using OpenCV. Face regions were 
detected and cropped using Haar Cascade or Dlib’s 

HOG-based detector. The pixel values were normalized 
to the [0, 1] range for training stability. To enhance 
generalization and reduce overfitting, data augmentation 

techniques such as horizontal flips, random rotations, 
brightness/contrast adjustments, zooms, and spatial 

shifts were applied. This process ensured a diverse, 
consistent, and robust dataset for the model training. 

C. Model Training 

The core detection model was built using 

TensorFlow/Keras in Python and trained on 
preprocessed datasets via supervised learning. The 
architecture features multiple convolutional and max-

pooling layers to extract hierarchical spatial features, 
along with dropout and batch normalization to prevent 

overfitting and enhance training stability. The final 
classification was achieved using fully connected layers 

with a sigmoid activation function for binary output. The 
model used the Adam optimizer with a dynamic learning 
rate scheduler and a binary cross-entropy loss. Training 

was performed with a batch size of 32 for 25–50 epochs, 
employing early stopping based on the validation loss to 

maintain generalization. 

D. Results and Performance 

The performance of the trained model was rigorously 
evaluated on a reserved test set using several standard 

classification metrics. The system demonstrated an 
accuracy of approximately 93–95% across unseen 
images, indicating a strong generalization. The F1-score 

exceeded 0.92, suggesting a balanced performance 
between precision and recall. The ROC-AUC score, 

which measures the model’s confidence across various 
thresholds, reached 0.96, affirming the system’s ability 
to reliably distinguish between real and fake facial 

images. Beyond the technical metrics, the model was 
integrated into a Flask-based web interface, enabling 

real-time detection with an average response time of less 
than 2 s per image. The interface provides instant 

visualization of the classification results and detection 
probabilities, offering a smooth user experience and 
demonstrating the practical viability of the system. 

Overall, the results validate the effectiveness and 
deployability of the proposed solution in real-world 

scenarios.

 

Figure 8: Deep Fake Detection Result-Classified as Fake  

 

 

Figure 9: Attention HeatMap for Fake Image 

 

 

Figure 10: Deep Fake Detection Result-Classified as Real 

 

Figure 11: Attention HeatMap for Real Image 

 

Figure 12: Model Performance Metrics 
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Figure 13: Confusion Matrix for Classification Results 

 

 

Figure 14: Receiver Operating Characteristic Curve  

 

 

Figure 15: Training and Validation Accuracy over Epochs  

Method Face X-ray Inconsistent  
Head Poses 

Audio-Visual 
Inconsistencies 

Proposed 
Hybrid 
Framework 

Algorithm Two-stream 
ResNet 
(CNN-based) 

Facial 
Landmark 
Detection + 
Geometric 
Analysis 

Multi-task CNN 
(Audio-Visual 
Sync) 

LBP + CNN 

Weakness Poor 
generalization 
to unseen 
manipulation 
Methods 

Ineffective 
when pose is 
corrected; 
not image-
compatible 

Needs 
audio/video; not 
image-
compatible 

None 
reported for 
image input 

Generalization Poor Moderate Moderate Strong 

Accuracy 85% (drops to 
<65% on 
unseen data) 

80% 86% (with 
audio) 

92–95% 

Real-Time 
Capability 

No No No Yes (Flask-
based GUI) 

Table 1: Comparison of Deepfake Detection Methods   and 

Their Characteristics. 

 

Algorithm Accuracy Precision Recall ROC 

LBP+CNN 92.00% 91.00% 93.00% 95.00% 

Table 2 : Performance Metrics of the Proposed Hybrid 

LBP+CNN. 

VI. CONCLUSION AND FUTURE SCOPE 

This paper demonstrates the viability of using a hybrid 
LBP + CNN approach for deepfake face detection. By 
focusing on image-level detection, the system avoids the 

complexity associated with video processing while 
achieving high detection accuracy. The integration with 

a lightweight Flask interface enhances its usability, 
making it a practical and efficient tool for digital 
forensics and media content validation. 

Future Enhancement includes Several improvements 

can be made to extend the system’s capabilities in the 
future. These include expanding support for video-based 

detection by integrating Vision Transformers (ViTs) and 
Long Short-Term Memory networks (LSTMs), enabling 

real-time analysis through live camera stream input, 
deploying the system on mobile or cloud platforms for 
greater accessibility, and incorporating multimodal 

detection by analyzing additional elements such as voice 
patterns and facial expression shifts. 
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